James Tour of Rice University has received funding to support his energy transition research. Photo via rice.edu

A Rice University chemist James Tour has secured a new $12 million cooperative agreement with the U.S. Army Engineer Research and Development Center on the team’s work to efficiently remove pollutants from soil.

The four-year agreement will support the team’s ongoing work on removing per- and polyfluoroalkyl substances (PFAS) from contaminated soil through its rapid electrothermal mineralization (REM) process, according to a statement from Rice.

Traditionally PFAS have been difficult to remove by conventional methods. However, Tour and the team of researchers have been developing this REM process, which heats contaminated soil to 1,000 C in seconds and converts it into nontoxic calcium fluoride efficiently while also preserving essential soil properties.

“This is a substantial improvement over previous methods, which often suffer from high energy and water consumption, limited efficiency and often require the soil to be removed,” Tour said in the statement.

The funding will help Tour and the team scale the innovative REM process to treat large volumes of soil. The team also plans to use the process to perform urban mining of electronic and industrial waste and further develop a “flash-within-flash” heating technology to synthesize materials in bulk, according to Rice.

“This research advances scientific understanding but also provides practical solutions to critical environmental challenges, promising a cleaner, safer world,” Christopher Griggs, a senior research physical scientist at the ERDC, said in the statement.

Also this month, Tour and his research team published a report in Nature Communications detailing another innovative heating technique that can remove purified active materials from lithium-ion battery waste, which can lead to a cleaner production of electric vehicles, according to Rice.

“With the surge in battery use, particularly in EVs, the need for developing sustainable recycling methods is pressing,” Tour said in a statement.

Similar to the REM process, this technique known as flash Joule heating (FJH) heats waste to 2,500 Kelvin within seconds, which allows for efficient purification through magnetic separation.

This research was also supported by the U.S. Army Corps of Engineers, as well as the Air Force Office of Scientific Research and Rice Academy Fellowship.

Last year, a fellow Rice research team earned a grant related to soil in the energy transition. Mark Torres, an assistant professor of Earth, environmental and planetary sciences; and Evan Ramos, a postdoctoral fellow in the Torres lab; were given a three-year grant from the Department of Energy to investigate the processes that allow soil to store roughly three times as much carbon as organic matter compared to Earth's atmosphere.

By analyzing samples from the East River Watershed, the team aims to understand if "Earth’s natural mechanisms of sequestering carbon to combat climate change," Torres said in a statement.

———

This article originally ran on InnovationMap.

Two Rice University researchers just received DOE funding for carbon storage research. Photo by Gustavo Raskosky/Rice University

Research team lands DOE grant to investigate carbon storage in soil

planting climate change impact

Two researchers at Rice University are digging into how soil is formed with hopes to better understand carbon storage and potential new methods for combating climate change.

Backed by a three-year grant from the Department of Energy, the research is led by Mark Torres, an assistant professor of Earth, environmental and planetary sciences; and Evan Ramos, a postdoctoral fellow in the Torres lab. Co-investigators include professors and scientists with the Brown University, University of Massachusetts Amherst and Lawrence Berkeley National Laboratory.

According to a release from Rice, the team aims to investigate the processes that allow soil to store roughly three times as much carbon as organic matter compared to Earth's atmosphere.

“Maybe there’s a way to harness Earth’s natural mechanisms of sequestering carbon to combat climate change,” Torres said in a statement. “But to do that, we first have to understand how soils actually work.”

The team will analyze samples collected from different areas of the East River watershed in Colorado. Prior research has shown that rivers have been great resources for investigating chemical reactions that have taken place as soil is formed. Additionally, research supports that "clay plays a role in storing carbon derived from organic sources," according to Rice.

"We want to know when and how clay minerals form because they’re these big, platy, flat minerals with a high surface area that basically shield the organic carbon in the soil," Ramos said in the statement. "We think they protect that organic carbon from breakdown and allow it to grow in abundance.”

Additionally, the researchers plan to create a model that better quantifies the stabilization of organic carbon over time. According to Torres, the model could provide a basis for predicting carbon dioxide changes in Earth's atmosphere.

"We’re trying to understand what keeps carbon in soils, so we can get better at factoring in their role in climate models and render predictions of carbon dioxide changes in the atmosphere more detailed and accurate,” Torres explained in the statement.

The DOE and Rice have partnered on a number of projects related to the energy transition in recent months. Last week, Rice announced that it would host the Carbon Management Community Summit this fall, sponsored by the DOE, and in partnership with the city of Houston and climate change-focused multimedia company Climate Now.

In July the DOE announced $100 million in funding for its SCALEUP program at an event for more than 100 energy innovators at the university.

Rice also recently opened its 250,000-square-foot Ralph S. O’Connor Building for Engineering and Science. The state-of-the-art facility is the new home for four key research areas at Rice: advanced materials, quantum science and computing, urban research and innovation, and the energy transition.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Investment giant to acquire TXNM Energy for $11.5 billion

m&a moves

Blackstone Infrastructure, an investment giant with $600 million in assets under management, has agreed to buy publicly traded TXNM Energy in a debt-and-stock deal valued at $11.5 billion.

TXNM Energy is the parent company of Lewisville-based Texas New Mexico Power (TNMP), which supplies electricity to more than 270,000 homes and businesses throughout Texas. Its Houston-area service territory includes Alvin, Angleton, Brazoria, Dickinson, Friendswood, La Marque, League City, Sweeny, Texas City and West Columbia.

Once Blackstone Infrastructure wraps up the deal in the second half of 2026, Albuquerque, New Mexico-based TXNM will no longer be a public company. But TNMP’s headquarters will remain in Texas and its rates will continue to be set by the Public Utility Commission of Texas. TNMP was founded in 1934.

Blackstone Infrastructure is affiliated with investment powerhouse Blackstone Inc., which has $1.2 trillion in assets under management and is the world’s largest investment manager.

“TNMP has done an excellent job of meeting its customers’ growing demand for electricity and supporting the communities it serves,” Sean Klimczak, Blackstone’s global head of infrastructure, said in a news release. “We look forward to utilizing our long-term investment commitments to support TNMP as they continue on this path of high-demand growth across Texas.”

During TXNM’s fourth-quarter earnings call in February, Chairwoman and CEO Patricia Vincent-Collawn said the company’s five-year Texas capital investment plan had grown by more than $1 billion.

“Our future is so bright with these increased investment levels that we are now targeting earnings growth of 7 percent to 9 percent through 2029,” Vincent-Collawn said.

“Our financial expectations are driven by the continued expansion of grid infrastructure supporting growth and reliability in our Texas service territory,” she added.

In 2024, TXNM reported revenue of $1.96 billion, up 1.7 percent from the previous year.

$135 million Houston battery storage facility breaks ground

coming soon

SMT Energy and CenterPoint Energy have partnered with utility infrastructure solutions provider Irby Construction Company to break ground on a 160 megawatt battery energy storage system (BESS) located in the Houston zone of the ERCOT market.

“We are proud to be underway and deliver this grid-strengthening project to Houston,” Kevin Midei, SVP of engineering, procurement and construction, at SMT Energy, said in a news release.

The BESS, SMT Houston IV, is expected to support grid stability, deliver fast-response power during peak demands and provide resiliency and renewable integration. The project is expected to be online by 2026 and store and dispatch enough electricity to power 8,800 homes in Texas annually.

SMT Energy is the project owner and developer, and CenterPoint Energy will serve as the interconnecting utility, integrating the system into Houston’s broader electrical network,” according to the companies. Irby Construction will serve as the engineering, procurement, and construction (EPC) contractor, and construction of the project is expected to be completed by July. On May 14, the companies broke ground with a ribbon-cutting ceremony to symbolize the start of the build.

“Projects like this demonstrate how collaboration and forward-thinking infrastructure come together to power a more resilient energy future,” Tony Gardner, SVP and chief customer officer at CenterPoint, said in a news release. “At CenterPoint, we recently completed nearly 90 percent of our overall grid resiliency improvements. This is one more action we are taking to build a more resilient and reliable grid to better serve our customers.”

In March, Colorado-based SMT Energy secured $135 million in funding for the SMT Houston IV, led by Macquarie and KeyBanc Capital Markets as joint lead arrangers. In 2023, SMT Energy and joint venture partner SUSI Partners announced plans to add 10 battery storage projects to Texas, which would double capacity from 100 megawatts to 200 megawatts in the Houston and Dallas areas.

In 2019, Irby began construction on the Manatee BESS site with Florida Power and Light (FPL), which was the world’s largest BESS project at the time. Irby has built over 30 BESS sites and has more than 20 currently under construction or contract.

Daikin completes solar plant to power massive Houston-area campus

switched on

Japanese HVAC company Daikin Industries has completed a nearly one-megawatt solar power plant at its Daikin Comfort Technologies North America campus southeast of Waller.

Daikin says the new plant at its 4.2 million-square-foot Daikin Texas Technology Park will eliminate an estimated 845 metric tons of carbon emissions each year. The park houses the largest HVAC factory in North America.

“Daikin’s unwavering commitment to innovation drives us to continually perfect the air we share. With the launch of this solar project, we’re one step closer to being a net-zero CO2 emission factory by 2030,” Nathan Walker, senior vice president of environmental business development of locally based Daikin Comfort Technologies North America, said in a release. “This installation is a significant step in reducing our carbon footprint and underscores our commitment to energy efficiency, sustainability, and environmental stewardship.”

Solar power from the new facility will power the Daikin campus’ central chiller plant, which circulates about 125,000 gallons of chilled water annually and 75,000 gallons of hot water in the winter. Also, the solar setup is designed to connect to the electric grid that serves the campus. About 10,000 people work at the campus.

Daikin, a Fortune 1000 company, may not have been a familiar name to some Houstonians until January, when it took over the naming rights for the Houston Astros’ stadium. The naming rights agreement for Daikin Park, formerly Minute Maid Park, expires during the Astros’ 2039 season. The stadium had been named Minute Maid Park since 2002.

“The Astros are the pride of Houston, an organization that has built resiliency in hard times, and have succeeded to be a winning team. The coming together of both our organizations is a symbol of our love for our hometown and the communities of the Greater Houston area,” Takayuki “Taka” Inoue, executive vice president and chief sales and marketing officer at Daikin Comfort Technologies North America, said in November.