James Tour of Rice University has received funding to support his energy transition research. Photo via rice.edu

A Rice University chemist James Tour has secured a new $12 million cooperative agreement with the U.S. Army Engineer Research and Development Center on the team’s work to efficiently remove pollutants from soil.

The four-year agreement will support the team’s ongoing work on removing per- and polyfluoroalkyl substances (PFAS) from contaminated soil through its rapid electrothermal mineralization (REM) process, according to a statement from Rice.

Traditionally PFAS have been difficult to remove by conventional methods. However, Tour and the team of researchers have been developing this REM process, which heats contaminated soil to 1,000 C in seconds and converts it into nontoxic calcium fluoride efficiently while also preserving essential soil properties.

“This is a substantial improvement over previous methods, which often suffer from high energy and water consumption, limited efficiency and often require the soil to be removed,” Tour said in the statement.

The funding will help Tour and the team scale the innovative REM process to treat large volumes of soil. The team also plans to use the process to perform urban mining of electronic and industrial waste and further develop a “flash-within-flash” heating technology to synthesize materials in bulk, according to Rice.

“This research advances scientific understanding but also provides practical solutions to critical environmental challenges, promising a cleaner, safer world,” Christopher Griggs, a senior research physical scientist at the ERDC, said in the statement.

Also this month, Tour and his research team published a report in Nature Communications detailing another innovative heating technique that can remove purified active materials from lithium-ion battery waste, which can lead to a cleaner production of electric vehicles, according to Rice.

“With the surge in battery use, particularly in EVs, the need for developing sustainable recycling methods is pressing,” Tour said in a statement.

Similar to the REM process, this technique known as flash Joule heating (FJH) heats waste to 2,500 Kelvin within seconds, which allows for efficient purification through magnetic separation.

This research was also supported by the U.S. Army Corps of Engineers, as well as the Air Force Office of Scientific Research and Rice Academy Fellowship.

Last year, a fellow Rice research team earned a grant related to soil in the energy transition. Mark Torres, an assistant professor of Earth, environmental and planetary sciences; and Evan Ramos, a postdoctoral fellow in the Torres lab; were given a three-year grant from the Department of Energy to investigate the processes that allow soil to store roughly three times as much carbon as organic matter compared to Earth's atmosphere.

By analyzing samples from the East River Watershed, the team aims to understand if "Earth’s natural mechanisms of sequestering carbon to combat climate change," Torres said in a statement.

———

This article originally ran on InnovationMap.

Two Rice University researchers just received DOE funding for carbon storage research. Photo by Gustavo Raskosky/Rice University

Research team lands DOE grant to investigate carbon storage in soil

planting climate change impact

Two researchers at Rice University are digging into how soil is formed with hopes to better understand carbon storage and potential new methods for combating climate change.

Backed by a three-year grant from the Department of Energy, the research is led by Mark Torres, an assistant professor of Earth, environmental and planetary sciences; and Evan Ramos, a postdoctoral fellow in the Torres lab. Co-investigators include professors and scientists with the Brown University, University of Massachusetts Amherst and Lawrence Berkeley National Laboratory.

According to a release from Rice, the team aims to investigate the processes that allow soil to store roughly three times as much carbon as organic matter compared to Earth's atmosphere.

“Maybe there’s a way to harness Earth’s natural mechanisms of sequestering carbon to combat climate change,” Torres said in a statement. “But to do that, we first have to understand how soils actually work.”

The team will analyze samples collected from different areas of the East River watershed in Colorado. Prior research has shown that rivers have been great resources for investigating chemical reactions that have taken place as soil is formed. Additionally, research supports that "clay plays a role in storing carbon derived from organic sources," according to Rice.

"We want to know when and how clay minerals form because they’re these big, platy, flat minerals with a high surface area that basically shield the organic carbon in the soil," Ramos said in the statement. "We think they protect that organic carbon from breakdown and allow it to grow in abundance.”

Additionally, the researchers plan to create a model that better quantifies the stabilization of organic carbon over time. According to Torres, the model could provide a basis for predicting carbon dioxide changes in Earth's atmosphere.

"We’re trying to understand what keeps carbon in soils, so we can get better at factoring in their role in climate models and render predictions of carbon dioxide changes in the atmosphere more detailed and accurate,” Torres explained in the statement.

The DOE and Rice have partnered on a number of projects related to the energy transition in recent months. Last week, Rice announced that it would host the Carbon Management Community Summit this fall, sponsored by the DOE, and in partnership with the city of Houston and climate change-focused multimedia company Climate Now.

In July the DOE announced $100 million in funding for its SCALEUP program at an event for more than 100 energy innovators at the university.

Rice also recently opened its 250,000-square-foot Ralph S. O’Connor Building for Engineering and Science. The state-of-the-art facility is the new home for four key research areas at Rice: advanced materials, quantum science and computing, urban research and innovation, and the energy transition.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

8 Houston energy companies land on Time's top greentech list for 2025

top honor

The accolades keep rolling in for Houston-based Fervo Energy, a producer of geothermal power.

Fervo lands at No. 6 on Time magazine and Statista’s new list of America’s Top GreenTech Companies of 2025. The ranking recognizes sustainability-focused companies based on factors such as impact, financial strength, and innovation.

Time notes that Fervo broke ground in 2023 in Utah on what the company claims will be the world’s largest geothermal plant. The plant is scheduled to start supplying carbon-free electricity to the grid next year and to reach its 400-megawatt capacity in three years.

“Technologies like this only make a difference if we deploy them at large-scale in a way that can reduce carbon emissions and increase the reliability of the grid,” Fervo CEO Tim Latimer told Time in 2023.

The startup was named North American Company of the Year by research and consulting firm Cleantech Group for 2025. Fervo topped the Global Cleantech 100, Cleantech Group’s annual list of the world’s most innovative and promising cleantech companies.

Last year, Fervo also made Time’s list of the 200 Best Inventions of 2024. Fervo was recognized in the green energy category for its FervoFlex geothermal power system.

Founded in 2017, Fervo is now a unicorn, meaning its valuation as a private company exceeds $1 billion. The startup’s valuation is estimated at $1.4 billion. According to PitchBook data, the company raised $634 million in the fourth quarter of 2024.

In all, eight Houston-area companies appear among the top 250 greentech companies ranked by Time and Statista. Other than Fervo, they are:

  • No. 43 Lancium Technologies, an energy storage and distribution company
  • No. 50 Solugen, a producer of sustainable chemicals.
  • No. 56 Quaise Energy, which specializes in terawatt-scale geothermal power.
  • No. 129 Plus Power, a developer, owner and operator of battery storage projects.
  • No. 218 Dream Harvest, which promotes sustainable vertical farming.
  • No. 225 Cemvita, which uses synthetic biology to convert carbon emissions into bio-based chemicals.
  • No. 226 Syzygy Plasmonics, which decarbonizes chemical production.
Vermont-based BETA Technologies claimed the No. 1 spot. The company manufactures electric aircraft.

Global co. opens state-of-the-art energy innovation hub in Houston

flagship facility

French multinational company Schneider Electric has opened a new 10,500-square-foot, state-of-the-art Energy Innovation Center in Houston.

The new facility is located in Houston’s Energy Corridor and is designed to “foster increased collaboration and technological advancements across the entire value chain,” according to a news release from the company. The new Houston location joins Schneider's existing innovation hubs in Paris, Singapore and Bangalore.

The venue will serve as a training center for process control engineers, production superintendents, manufacturing managers, technical leads and plant operations personnel. It can simulate various real-world scenarios in refineries, combined-cycle power plants, ethylene plants, recovery boilers and chemical reactors.

It includes an interactive control room and artificial Intelligence applications that “highlight the future of industrial automation,” according to the release.

"Digitalization is significantly enhancing the global competitiveness of the U.S. through continuous innovation and increased investment into next-generation technology," Aamir Paul, Schneider Electric's President of North America Operations, said in the release.

Texas has over 4,100 Schneider Electric employees, the most among U.S. states, and has facilities in El Paso, the Dallas-Fort Worth metroplex and other areas.

"This flagship facility in the Energy Capital of the World underscores our commitment to driving the future of software-defined automation for our customers in Houston and beyond,” Paul added in the release. “With this announcement, we are excited to continue supporting the nation's ambitions around competitive, efficient and cost-effective manufacturing."

Schneider Electric says the new Houston facility is part of its expansion plans in the U.S. The company plans to invest over $700 million in its U.S. operations through 2027, which also includes an expansion at its El Paso campus.

The company also announced plans to invest in solar and battery storage systems developed, built, and operated by Houston-based ENGIE North America last year. Read more here.