what Hou read

Top cleantech startups, Houston company's project breaks ground, and more trending news

Rice Alliance named the top 10 energy tech startups — and more trending news from this week. Photo via Rice Alliance

Editor's note: It's been a busy news week for energy transition in Houston, and some of this week's headlines resonated with EnergyCapital readers on social media and daily newsletter. Trending news included top energy tech startups named, Fervo Energy breaking ground on a Utah project, and more.

Investors name 10 most-promising energy tech companies at Houston conference

Here's what energy transition companies stood out to Rice Alliance's experts. Photo via Rice Alliance

At the 20th annual Energy Tech Venture Forum presented by Rice Alliance for technology and Entrepreneurship, 11 startups scored recognition from the event's investors who evaluated over 90 early-stage energy transition companies.

"The selection process was both exhilarating and challenging given the incredible ideas we've seen today," says Jason Sidhu, director of information services business engagement at TC Energy, who announced the top companies. "I want to extend my gratitude to every company that participate din this year's Energy Tech Venture Forum. Your commitment to solving energy problems and pursuing ambitions ideas is truly commendable." Read more.

Houston company breaks ground on 'world's largest' geothermal project with next-generation tech

Things are heating up in Utah for Fervo Energy. Photo via fervoenergy.com

Houston-based cleantech startup Fervo Energy has broken ground on what it's describing as the "world’s largest next-gen geothermal project."

Fervo says the a 400-milliwatt geothermal energy project in Cape Station, Utah, will start delivering carbon-free power to the grid in 2026, with full-scale production beginning in 2028.

The project, in southwest Utah, is about 240 miles southwest of Salt Lake City and about 240 miles northeast of Las Vegas. Cape Station is adjacent to the U.S. Department of Energy’s Frontier Observatory for Research in Geothermal Energy (FORGE) and near the Blundell geothermal power plant. Read more.

Houston faces critical inflection point amid energy transition, says expert

The question the Houston business community must be able to answer today is “Are we going to be ready for 2035?” Photo via Getty Images

In 1914, Winston Churchill faced a difficult decision. Over two decades before his first term as Prime Minister during World War 2, he oversaw the entire Royal Navy as First Lord of the Admiralty. Shipbuilding technology was rapidly evolving in that era and one of the key questions was whether to use coal or oil as fuel for the large ships in the fleet. Coal was the more proven technology at that point and the British had a strong supply chain across the Empire. Oil was lighter and easier to operate, but the worldwide supply and infrastructure were still limited.

Ultimately Churchill was persuaded by Admiral Jacky Fisher and others to convert the entire fleet to oil. To resolve the supply chain issue, the British government bought a majority stake in Anglo-Persian Oil Company, which became BP. The Royal Navy was possibly the largest consumer of fuel worldwide at the time, so this decision had a major effect on the energy transition in that era. Within 30 years, steam engines were no longer used for transportation in most of the world.

In that same decade, Houston emerged as a leading energy hub in the United States: Humble Oil was founded, the Houston Ship Channel was dredged, and the Baytown Refinery was constructed. World War I in Europe, and the mass adoption of cars in the US spurred a major increase in demand for oil. Oil went on to dominate the global energy market, providing cheap and reliable transportation, industrial production, and materials. Houston grew and prospered along with it to become the 5th largest metro area in the country today. Read more.

DOE-backed summit to come to Houston to address carbon management

This fall, Rice University's research hub will host a DOE-backed event focused on carbon management. Photo via Rice/Facebook

Climate change-focused multimedia company Climate Now announced this week that it will partner with the city of Houston and Rice University to host a Carbon Management Community Summit this fall.

The summit, sponsored by the U.S. Department of Energy, will be held at Rice University Bioscience Research Collaborative on November 16 and 17, and will feature interactive workshops and breakout learning sessions, as well as presentations and discussions from excerpts in the field. It will also be broadcasted virtually for those who cannot attend the event in person. Read more.

Texas company secures $200M for solar project near Houston

The project will take over more than 1,000 acres of former farmland about an hour outside of Houston. Photo via Getty Images

An Austin-based company has scored $200 million in financing for a solar energy project it’s building in Liberty County.

Recurrent Energy’s 134-megawatt Liberty Solar project, about 50 miles northeast of Houston, is scheduled to start operating in 2024. The facility will occupy more than 1,000 acres of former farmland about six miles south of Dayton.

Last year, Recurrent Energy indicated the project represented an investment of $155 million, according to paperwork filed with the Texas Comptroller of Public Accounts. Read more.

Trending News

A View From HETI

A team at the University of Houston is changing the game for sodium-ion batteries. Photo via Getty Images

A research lab at the University of Houston has developed a new type of material for sodium-ion batteries that could make them more efficient and boost their energy performance.

Led by Pieremanuele Canepa, Robert Welch assistant professor of electrical and computer engineering at UH, the Canepa Research Laboratory is working on a new material called sodium vanadium phosphate, which improves sodium-ion battery performance by increasing the energy density. Energy density is the amount of energy stored per kilogram, and the new material can do so by more than 15 percent. With a higher energy density of 458 watt-hours per kilogram — compared to the 396 watt-hours per kilogram in older sodium-ion batteries — this material brings sodium technology closer to competing with lithium-ion batteries, according to the researchers.

The Canepa Lab used theoretical expertise and computational methods to discover new materials and molecules to help advance clean energy technologies. The team at UH worked with the research groups headed by French researchers Christian Masquelier and Laurence Croguennec from the Laboratoire de Reáctivité et de Chimie des Solides, which is a CNRS laboratory part of the Université de Picardie Jules Verne, in Amiens France, and the Institut de Chimie de la Matière Condensée de Bordeaux, Université de Bordeaux, Bordeaux, France for the experimental work on the project.

The researchers then created a battery prototype using the new materia sodium vanadium phosphate, which demonstrated energy storage improvements. The material is part of a group called “Na superionic conductors” or NaSICONs, which is made to let sodium ions move in and out of the battery during charging and discharging.

“The continuous voltage change is a key feature,” Canepa says in a news release. “It means the battery can perform more efficiently without compromising the electrode stability. That’s a game-changer for sodium-ion technology.”

The synthesis method used to create sodium vanadium phosphate may be applied to other materials with similar chemistries, which could create new opportunities for advanced energy storage. A paper of this work was published in the journal Nature Materials.

"Our goal is to find clean, sustainable solutions for energy storage," Canepa adds. "This material shows that sodium-ion batteries can meet the high-energy demands of modern technology while being cost-effective and environmentally friendly."

Pieremanuele Canepa, Robert Welch assistant professor of electrical and computer engineering at UH, is leading a research project that can change the effectiveness of sodium-ion batteries. Photo courtesy of UH

Trending News