Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

New research center at Rice aims to work toward strict EPA standards for forever chemicals

pfas r&d

Rice University announced a new research center that will focus on per- and polyfluoroalkyl substances (PFAS) called the Rice PFAS Alternatives and Remediation Center (R-PARC).

R-PARC promises to unite industry, policy experts, researchers, and entrepreneurs to “foster collaboration and accelerate the development of innovative solutions to several PFAS challenges,” according to a news release. Challenges include comprehensive PFAS characterization and risk assessment, water treatment infrastructure upgrades, contaminated site remediation, and the safe alternatives development.

“We firmly believe that Rice is exceptionally well-positioned to develop disruptive technologies and innovations to address the global challenges posed by PFAS,” Rice President Reginald DesRoches says in a news release. “We look forward to deepening our relationship with ERDC and working together to address these critical challenges.”

The Environmental Protection Agency issued its stringent standards for some of the most common PFAS, which set the maximum contaminant level at 4.0 parts per trillion for two of them. Pedro Alvarez, Rice’s George R. Brown Professor of Civil and Environmental Engineering, director of the WaTER Institute, likened this in a news release to “four drops in 1,000 Olympic pools,” and also advocated that the only way to meet these strict standards is through technological innovation.

The center will be housed under Rice’s Water Technologies Entrepreneurship and Research (WaTER) Institute that was launched in January 2024. The WaTER Institute has worked on advancements in clean water technology research and applications established during the decade-long tenure of the Nanosystems Engineering Research Center for Nanotechnology Enabled Water Treatment, which was funded by the National Science Foundation.

“The challenge of PFAS cuts across several of the four major research trajectories that define Rice’s strategic vision,” Rice’s executive vice president for research and professor of materials science and nanoengineering and physics and astronomy Ramamoorthy Ramesh, adds in the release. “R-PARC will help focus and amplify ongoing work on PFAS remediation at Rice.”

The ERDC delegation was led by agency director David Pittman who also serves as the director of research and development and chief scientist for the U.S. Army Corps of Engineers. ERDC representatives also met with several Rice researchers that were involved in work related to the environment, and sustainability, and toured the labs and facilities.

Texas ride-hailing app grows Houston fleet with EV additions

rolling out

Your next Alto ride might be electric. The Dallas-based car service has rolled out electric vehicles in Houston.

Alto, founded in Dallas in 2018 and launched in Houston in 2020, elevates ridesharing with its own fleet of company-owned, clearly branded SUVs driven by its staff of drivers. The company previously announced its plans to evolve its fleet into being completely electric, and the first EVs have hit the road, according to a company email.

"Our EV additions to the Houston fleet mark an important moment in our commitment to significantly reduce Alto's environmental impact," reads the email sent on September 5.

The new cars offer similar features to its existing fleet, including legroom, phone chargers, water bottles for riders, and more. Plus, the new cars — Kia EV9 — boast a quieter ride.

Alto has consistently grown in its Texas markets — which include Houston and Dallas — over the years, including expanding into Houston's suburbs.

Will Coleman, CEO of Alto, previously wrote in a guest column for InnovationMap that his priorities for starting the company included safety — but also sustainability. For years, Alto has been expressing interest in introducing EVs, with plans of having a completely electric fleet.

"This EV vision is one example of how a rideshare company can build a better and more accountable industry, and these steps also give Houstonians a more responsible and sustainable transportation solution," Coleman writes.

Promising Houston startup expands energy efficiency product to Middle East, Singapore

big move

NanoTech Materials has announced a big expansion for its business.

The Houston company, which created a roof coating using nanotechnology that optimizes energy efficiency, has partnered with Terminal Subsea Solutions Marine Service SP to bring its products to the Gulf Cooperation Council and Singapore. TSSM will become the exclusive distributor and partner of Houston’s NanoTech Materials products, which will include the Cool Roof Coat, Vehicular Coat, and Insulative Coat for the GCC countries and Singapore.

NanoTech Materials technology that ranges from roof coatings on mid- to low-rise buildings to shipping container insulation to coating trucks and transportation vehicles will be utilized by TSSM in the partnership. NanoTech’s efforts are focused on heat mitigation that can reduce energy costs, enhance worker safety, and minimize business risks in the process.

“Businesses and communities within the GCC and Singapore feel the impact of extreme temperatures and longer Summers more acutely than any other region in the world,” Mike Francis, CEO of NanoTech Materials, says in a news release. “We have an opportunity to make a real impact here through reduced energy load, cooler and safer working conditions, and a reduced carbon emissions output from the hottest, driest place on earth. We are incredibly excited to be partnering with our colleagues at TSSM to bring this powerful technology to the region.”

One of the areas that will benefit from this collaboration is the Middle East. The GCC region is characterized by a desert climate, which has average annual temperature reaching 107.6°F and summer peaks climbing as high as 130°F. The effects of these extreme conditions can be dangerous for workers especially with strict labor laws mandating midday work bans under black flag conditions, which can result in productivity losses as well.

NanoTech’s proprietary technology, the Insulative Ceramic Particle (ICP), will be used to address challenges in energy efficiency and heat control in the logistics and built environment sector. The platform can be integrated into many applications, and the impact can range from reducing greenhouse gas emissions to protecting communities that are wildfire-prone. The core of the technology has a lower conductivity than aerogels. It also has a “near-perfect emissivity score” according to the company. The NanoTech ICP is integrated with base matrix carriers; building materials, coatings, and substrates, which gives the materials heat conservation, rejection, or containment properties.

By combining the ICP into an acrylic roof coating, NanoTech has created the Cool Roof Coat, which reflects sunlight and increases the material's heat resistance. This can lower indoor temperatures by 25 to 45°F in single-story buildings and reduce the carbon emissions of mid to low-rise buildings. This can potentially equal energy savings from 20 percent up to 50 percent, which would surpass the average 15 percent savings of traditional reflective only coatings.

“This technology will have a huge impact on supporting the region's aggressive climate initiatives, such as Saudi Arabia’s Green Initiative, aiming to reduce carbon emissions by 278 million tons annually by 2030,” Jameel Ahmed, managing director at TSSM, says in the release. “The regional efforts to enhance climate action and economic opportunities through substantial investments in green technologies and projects are evident, and we are proud to be offering a product that can make a difference.”

NanoTech says its coating maintains its effectiveness over time and doesn’t suffer UV degradation issues which are helpful, especially in extreme weather conditions workers and businesses face in regions like the Middle East.