new to hou

Houston solar manufacturer opens new 50,000-square-foot facility

PV Hardware USA has opened its new $30 million facility in the Houston area. Photo courtesy of PVH

A Houston-area solar tracker manufacturer opened its new manufacturing facilities last week. The $30 million project is dedicated to manufacturing solar structures and trackers in part of the country’s goal to expand solar power generation infrastructure.

PV Hardware USA cut the ribbon on the new facility on May 30 in Houston. The new, 50,000-square-foot facility is one of America’s largest, according to the company.

“With the opening of this factory in Houston, PVH USA is affirming its unwavering commitment to solar energy development in the United States,” PVH CEO Emilio García says in a news release. “Our Houston operation will be a key player in the development of utility-scale solar energy across America, and we look forward to driving progress as a leading solar tracker manufacturer.”

PV Hardware USA cut the ribbon on the new facility on May 30 in Houston. Photo courtesy of PVH

The facility aims to provide custom-built solar tracking systems for new solar generation projects, which is expected to be a lead source of growth in the U.S. energy power sector. Solar power generation is projected to increase from 95 Gigawatts (GW) of total generating capacity to 131 GW in 2024, and then climb to 174 GW by 2025 according to U.S. Energy Information Administration.

The new Houston factory will employ more than 120 local workers, and is part of a larger mission to bring jobs, and increased awareness to renewable energy efforts.

“We are committed to powering the solar revolution with U.S. manufacturing and workers,” Garcia adds in the release. “The incentives provided through the Infrastructure Investment and Jobs Act are a tremendous opportunity to promote domestic manufacturing and support local communities. PVH USA aims to contribute to job creation and economic growth while bolstering the nation's renewable energy infrastructure.”

The new 50,000-square-foot facility is one of America’s largest, according to the company. Photo courtesy of PVH

Trending News

A View From HETI

Rice University scientists' “recharge-to-recycle” reactor has major implications for the electric vehicle sector. Photo courtesy Jorge Vidal/Rice University.

Engineers at Rice University have developed a cleaner, innovative process to turn end-of-life lithium-ion battery waste into new lithium feedstock.

The findings, recently published in the journal Joule, demonstrate how the team’s new “recharge-to-recycle” reactor recharges the battery’s waste cathode materials to coax out lithium ions into water. The team was then able to form high-purity lithium hydroxide, which was clean enough to feed directly back into battery manufacturing.

The study has major implications for the electric vehicle sector, which significantly contributes to the waste stream from end-of-life battery packs. Additionally, lithium tends to be expensive to mine and refine, and current recycling methods are energy- and chemical-intensive.

“Directly producing high-purity lithium hydroxide shortens the path back into new batteries,” Haotian Wang, associate professor of chemical and biomolecular engineering, co-corresponding author of the study and co-founder of Solidec, said in a news release. “That means fewer processing steps, lower waste and a more resilient supply chain.”

Sibani Lisa Biswal, chair of Rice’s Department of Chemical and Biomolecular Engineering and the William M. McCardell Professor in Chemical Engineering, also served as co-corresponding author on the study.

“We asked a basic question: If charging a battery pulls lithium out of a cathode, why not use that same reaction to recycle?” Biswal added in the release. “By pairing that chemistry with a compact electrochemical reactor, we can separate lithium cleanly and produce the exact salt manufacturers want.”

The new process also showed scalability, according to Rice. The engineers scaled the device to 20 square centimeters, then ran a 1,000-hour stability test and processed 57 grams of industrial black mass supplied by industry partner Houston-based TotalEnergies. The results produced lithium hydroxide that was more than 99 percent pure. It also maintained an average lithium recovery rate of nearly 90 percent over the 1,000-hour test, showing its durability. The process also worked across multiple battery chemistries, including lithium iron phosphate, lithium manganese oxide and nickel-manganese-cobalt variants.

Looking ahead, the team plans to scale the process and consider ways it can sustain high efficiency for greater lithium hydroxide concentrations.

“We’ve made lithium extraction cleaner and simpler,” Biswal added in the release. “Now we see the next bottleneck clearly. Tackle concentration, and you unlock even better sustainability.

Trending News