Bill Gates says companies like Fervo push the geothermal technology 'to new depths.' Photo via fervoenergy.com

In a new blog post spotlighting Houston-based geothermal power startup Fervo Energy, billionaire Bill Gates — a Fervo investor — predicts geothermal will eventually supply up to 20 percent of the world’s electricity, up from his previous estimate of as much as 5 percent.

Today, geothermal accounts for less than 1 percent of electricity generated around the world, according to the International Energy Agency. The agency forecasts geothermal will represent up to 15 percent of global power by 2050.

“Geothermal power will have a big role to play in our clean energy future, and it’s exciting to see companies like Fervo push the technology to new depths,” Gates wrote.

Gates’ more than $1 billion Breakthrough Energy Ventures fund has contributed to the $982 million pool of money that Fervo has raised since its founding in 2017. Fervo is now a unicorn, meaning its valuation as a private company exceeds $1 billion. Its valuation has been estimated at $1.4 billion.

The Microsoft billionaire published the blog post on his Gates Notes website after touring the site of Fervo’s Cape Station geothermal project, which is under construction in Utah. Fervo says Cape Station will be the world’s largest geothermal plant, capable of someday producing up to 2 gigawatts of power.

Earlier this year, Fervo raised $206 million to put toward the development of Cape Station. Of that amount, $100 million came from Breakthrough Energy Catalyst, a green tech investment program backed by Gates, according to Inc.com.

The first phase of Cape Station is scheduled to be completed in 2026, with first-year power generation pegged at 100 megawatts. An additional 500 megawatts of power-producing capacity is slated to go online in 2028.

“Geothermal is one of the most promising ways to deliver clean energy that’s reliable and affordable,” Gates wrote.

In the blog post, Gates praised the simplicity of geothermal energy.

“The interior of the Earth is incredibly hot, and the deeper you go, the hotter the ground becomes,” he explained. “If you pump fluid deep enough to be warmed by this heat and then pump it back to the surface, you can turn the hot liquid into steam and use it to spin turbines and generate electricity — just like many other types of power plants.”

Gates noted that horizontal drilling is one of Fervo’s biggest innovations. The company extends its wells horizontally by as much as 5,000 feet at the deepest point. It couples horizontal drilling with hydraulic fracturing, or fracking, to extract geothermal energy from rock formations.

Most wells at Cape Station are 8,000 to 9,000 feet deep, and the deepest one is 15,000 feet below the surface, Gates pointed out.

Gates also emphasized the water-conserving, closed-system setup at Cape Station.

“Geothermal energy is one of the more climate-friendly sources of power, but one of its downsides is how much water it uses. … Fervo’s technology captures all the water that would’ve been lost and recirculates it underground to keep the system running,” he wrote.

Houston's Fervo Energy has secured new funding for Cape Station, its Utah geothermal energy plant. Photo courtesy Fervo Energy.

Fervo Energy lands $200 million in capital for new geothermal project

fresh funding

Houston-based Fervo Energy, a producer of geothermal power, has secured $205.6 million in capital to help finance its geothermal project in southern Utah.

The money will go toward the first and second phases of Cape Station, a geothermal energy plant being developed in Beaver County, Utah. Beaver County is roughly an equal distance between Salt Lake City and Las Vegas.

The $205.6 million in capital came from three sources:

  • $100 million in equity from Breakthrough Energy Catalyst, a Kirkland, Washington-based platform that invests in emissions-reducing projects.
  • $60 million addition to Fervo’s existing loan from Mercuria, a Swiss energy and commodities trader. The revolving loan now totals $100 million.
  • $45.6 million in additional bridge debt financing from XRL-ALC, an affiliate of Irvington, New York-based X-Caliber Rural Capital. X-Caliber is a USDA-approved lender. The initial bridge loan was $100 million.

The first phase of Cape Station will supply 100 megawatts of carbon-free electricity to the power grid starting next year. Another 400 megawatts of capacity is supposed to go online by 2028. Fervo has permission to expand Cape Station’s capacity to as much as 2 gigawatts. On an annual basis, 2 gigawatts can supply enough electricity to power about 1.4 million homes.

“These investments demonstrate what we’ve known all along: Fervo’s combination of technical excellence, commercial readiness, and market opportunity makes us a natural partner for serious energy capital. The confidence our investors have in Fervo and in the Cape asset affirms that next-generation geothermal is ready to play a defining role in America’s energy future,” David Ulrey, Fervo’s CFO, said in a news release.

The Meta and Sage Geosystems project is reportedly the first next-generation geothermal project located to the east of the Rocky Mountains. Rendering by Sage Geosystems and Meta

Meta taps Houston geothermal co. to power data center growth with clean energy

big tech

A Houston company has signed a new agreement with Meta Platforms Inc. — Facebook's parent company — to power the tech giant's data center growth.

Houston-based Sage Geosystems agreed to deliver up to 150 megawatts of new geothermal baseload power to Meta. The companies made the announcement this week at the United States Department Energy’s Catalyzing Next Generation Geothermal Development Workshop.

The deal is significant because it's the first next-generation geothermal project located to the east of the Rocky Mountains, the companies report in a news release.

“This announcement is the perfect example of how the public and private sector can work together to make the clean energy transition a reality,” Cindy Taff, CEO of Sage Geosystems, says in the release. “We are thrilled to be at the forefront of the next generation of geothermal technology and applaud the DOE for supporting the commercialization of innovation solutions.

"As energy demand continues to grow, the need for reliable, resilient and sustainable power is paramount and our partnership with Meta underscores the critical need for innovative and sustainable energy solutions like ours,” she continues.

The project's first phase will aim to be operating in 2027. The plans reflect how geothermal is being recognized as a growing carbon-free energy source in the country, and how Meta is committed to clean energy initiatives.

“The U.S. has seen unprecedented growth in demand for energy as our economy grows, the manufacturing sector booms thanks to the Biden-Harris Administration’s Investing in America agenda, and new industries like AI expand,” U.S. Energy Deputy Secretary David Turk says. “The Administration views this increased demand as a huge opportunity to add more clean, firm power to the grid and geothermal energy is a game-changer as we work to grow our clean power supply.”

Sage's technology — called Geopressured Geothermal System — works deep in the earth to develop energy storage and geothermal baseload power.

“Meta thanks the Department of Energy’s leadership on promoting and supporting the exploration of new energy sources like geothermal," Urvi Parekh, head of renewable energy at Meta, says. "That leadership supports Meta’s goal to enable the addition of reliable, affordable, and carbon-free power to the grid with this geothermal energy deal. We are excited to partner with such an innovative company like Sage Geosystems that is a proven leader in geothermal development on this project and beyond.”

Sage recently teamed up with a utility provider for an energy storage facility in the San Antonio metro area to build its three-megawatt EarthStore facility.

The company is also working on an exploratory geothermal project for the Army’s Fort Bliss post in Texas, which is the third U.S. Department of Defense geothermal initiative in the Lone Star State.

Things are heating up in Utah for Fervo Energy. Photo via fervoenergy.com

Houston company breaks ground on 'world's largest' geothermal project with next-generation tech

coming soon

Houston-based cleantech startup Fervo Energy has broken ground on what it's describing as the "world’s largest next-gen geothermal project."

Fervo says the a 400-milliwatt geothermal energy project in Cape Station, Utah, will start delivering carbon-free power to the grid in 2026, with full-scale production beginning in 2028.

The project, in southwest Utah, is about 240 miles southwest of Salt Lake City and about 240 miles northeast of Las Vegas. Cape Station is adjacent to the U.S. Department of Energy’s Frontier Observatory for Research in Geothermal Energy (FORGE) and near the Blundell geothermal power plant.

The company says Cape Station will generate about 6,600 construction jobs and 160 full-time jobs.

“Beaver County, Utah, is the perfect place to deploy our next-generation geothermal technology,” Tim Latimer, co-founder and CEO of Fervo, says in a news release. “The warmth and hospitality we have experienced from the communities of Milford and Beaver have allowed us to embark on a clean energy journey none of us could have imagined just a few years ago.”

In February, the U.S. Bureau of Land Management gave its blessing to the project, allowing Fervo to undertake exploration activities at the site.

“Geothermal innovations like those pioneered by Fervo will play a critical role in extending Utah’s energy leadership for generations to come,” says Utah Gov. Spencer Cox, who attended the groundbreaking ceremony.

Since being founded in 2017, Fervo has raised more than $180 million in funding. Its highest-profile investors are billionaires Jeff Bezos, Richard Branson and Bill Gates. They’re backing Fervo through Breakthrough Energy Ventures, whose managing director sits on Fervo’s board of directors.

Other investors include the Canada Pension Plan Investment Board (CPP Investments), DCVC, Devon Energy, Liberty Energy, Helmerich & Payne, Macquarie, the Grantham Foundation for the Protection of the Environment, Impact Science Ventures, and Prelude Ventures.

Fervo aims to generate more than one gigawatt of geothermal energy by 2030. On average, one gigawatt of power can provide electricity for 750,000 homes. Two coal-fired power plants can generate roughly the same amount of electricity.

Earlier this year, Fervo announced results of a test at Nevada’s Project Red site, which will supply power to Google data centers in the Las Vegas area. Fervo says the 30-day well test established Project Red as the “most productive enhanced geothermal system in history,” the company says. The test generated 3.5 megawatts of electricity.

In 2021, Fervo and Google signed the world’s first corporate agreement to produce geothermal power. Under the deal, Fervo will generate five megawatts of geothermal energy for Google through the Nevada project, which is set to go online later this year.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Hazardous waste company with Houston presence to make $3B acquisition

big deal

Veolia, a Boston-based company with major operations in Texas, is purchasing hazardous-waste company Clean Earth from Enviri as part of a $3 billion deal.

Veolia is a private water operator, technology provider and hazardous waste and pollution treatment company that operates a large hazardous waste treatment and incineration facility in Port Arthur. Hazardous waste treatment is a growing sector as the clean energy, semiconductor manufacturing, healthcare and pharmaceutical industries generate high levels of waste that need to be handled safely.

Acquiring Clean Earth’s 82 facilities, which include 19 EPA-permitted sites, will expand Veolia’s reach into 10 new states and will position the company as the second-largest hazardous waste operator in the U.S., according to a news release. The deal is Veolia’s sixth and largest North American acquisition of 2025.

“(The acquisition) allows us to unlock the full value potential of our U.S. hazardous waste activities and to double our size on this critical, fast-growing sector, creating a No. 2 player,” Estelle Brachlianoff, CEO of Veolia, said in a news release. “We reinforce our global capacities in hazardous waste and further increase our international footprint.”

Veolia’s Port Arthur facility specializes in servicing generators with large-volume waste treatment requirements.

The transaction is expected to close mid-2026. Veolia hopes the increased exposure into industries such as retail and healthcare will help to offer a full range of environmental services across the U.S.

“This continued transformation of our portfolio enhances the growth profile and strength of our group, uniquely positioned to tackle the sustained demand for environmental security,” Brachlianoff added in the release.

Reliant partners to expand Texas virtual power plant and home battery use

energy incentives

Houston’s Reliant and San Francisco tech company GoodLeap are teaming up to bolster residential battery participation and accelerate the growth of NRG’s virtual power plant (VPP) network in Texas.

Through the new partnership, eligible Reliant customers can either lease a battery or enter into a power purchase agreement with GoodLeap through its GoodGrid program, which incentivises users by offering monthly performance-based rewards for contributing stored power to the grid. Through the Reliant GoodLeap VPP Battery Program, customers will start earning $40 per month in rewards from GoodLeap.

“These incentives highlight our commitment to making homeowner battery adoption more accessible, effectively offsetting the cost of the battery and making the upgrade a no-cost addition to their homes,” Dan Lotano, COO at GoodLeap, said in a news release.“We’re proud to work with NRG to unlock the next frontier in distributed energy in Texas. This marks an important step in GoodLeap reaching our nationwide goal of 1.5 GW of managed distributed energy over the next five years.”

Other features of the program include power outage plans, with battery reserves set aside for outage events. The plan also intelligently manages the battery without homeowner interaction.

The partnership comes as Reliant’s parent company, NRG, continues to scale its VPP program. Last year, NRG partnered with California-based Renew Home to distribute hundreds of thousands of VPP-enabled smart thermostats by 2035 in an effort to help households manage and lower their energy costs.

“We started building our VPP with smart thermostats across Texas, and now this partnership with GoodLeap brings home battery storage into our platform,” Mark Parsons, senior vice president and head of Texas energy at NRG, said in a the release. “Each time we add new devices, we’re enabling Texans to unlock new value from their homes, earn rewards and help build a more resilient grid for everyone. This is about giving customers the opportunity to actively participate in the energy transition and receive tangible benefits for themselves and their communities.

How Corrolytics is tackling industrial corrosion and cutting emissions

now streaming

Corrosion is not something most people think about, but for Houston's industrial backbone pipelines, refineries, chemical plants, and water infrastructure, it is a silent and costly threat. Replacing damaged steel and overusing chemicals adds hundreds of millions of tons of carbon emissions every year. Despite the scale of the problem, corrosion detection has barely changed in decades.

In a recent episode of the Energy Tech Startups Podcast, Anwar Sadek, founder and CEO of Corrolytics, explained why the traditional approach is not working and how his team is delivering real-time visibility into one of the most overlooked challenges in the energy transition.

From Lab Insight to Industrial Breakthrough

Anwar began as a researcher studying how metals degrade and how microbes accelerate corrosion. He quickly noticed a major gap. Companies could detect the presence of microorganisms, but they could not tell whether those microbes were actually causing corrosion or how quickly the damage was happening. Most tests required shipping samples to a lab and waiting months for results, long after conditions inside the asset had changed.

That gap inspired Corrolytics' breakthrough. The company developed a portable, real-time electrochemical test that measures microbial corrosion activity directly from fluid samples. No invasive probes. No complex lab work. Just the immediate data operators can act on.

“It is like switching from film to digital photography,” Anwar says. “What used to take months now takes a couple of hours.”

Why Corrosion Matters in Houston's Energy Transition

Houston's energy transition is a blend of innovation and practicality. While the world builds new low-carbon systems, the region still depends on existing industrial infrastructure. Keeping those assets safe, efficient, and emission-conscious is essential.

This is where Corrolytics fits in. Every leak prevented, every pipeline protected, and every unnecessary gallon of biocide avoided reduces emissions and improves operational safety. The company is already seeing interest across oil and gas, petrochemicals, water and wastewater treatment, HVAC, industrial cooling, and biofuels. If fluids move through metal, microbial corrosion can occur, and Corrolytics can detect it.

Because microbes evolve quickly, slow testing methods simply cannot keep up. “By the time a company gets lab results, the environment has changed completely,” Anwar explains. “You cannot manage what you cannot measure.”

A Scientist Steps Into the CEO Role

Anwar did not plan to become a CEO. But through the National Science Foundation's ICorps program, he interviewed more than 300 industry stakeholders. Over 95 percent cited microbial corrosion as a major issue with no effective tool to address it. That validation pushed him to transform his research into a product.

Since then, Corrolytics has moved from prototype to real-world pilots in Brazil and Houston, with early partners already using the technology and some preparing to invest. Along the way, Anwar learned to lead teams, speak the language of industry, and guide the company through challenges. “When things go wrong, and they do, it is the CEO's job to steady the team,” he says.

Why Houston

Relocating to Houston accelerated everything. Customers, partners, advisors, and manufacturing talent are all here. For industrial and energy tech startups, Houston offers an ecosystem built for scale.

What's Next

Corrolytics is preparing for broader pilots, commercial partnerships, and team growth as it continues its fundraising efforts. For anyone focused on asset integrity, emissions reduction, or industrial innovation, this is a company to watch.

Listen to the full conversation with Anwar Sadek on the Energy Tech Startups Podcast to learn more:

---

Energy Tech Startups Podcast is hosted by Jason Ethier and Nada Ahmed. It delves into Houston's pivotal role in the energy transition, spotlighting entrepreneurs and industry leaders shaping a low-carbon future.