Bill Gates says companies like Fervo push the geothermal technology 'to new depths.' Photo via fervoenergy.com

In a new blog post spotlighting Houston-based geothermal power startup Fervo Energy, billionaire Bill Gates — a Fervo investor — predicts geothermal will eventually supply up to 20 percent of the world’s electricity, up from his previous estimate of as much as 5 percent.

Today, geothermal accounts for less than 1 percent of electricity generated around the world, according to the International Energy Agency. The agency forecasts geothermal will represent up to 15 percent of global power by 2050.

“Geothermal power will have a big role to play in our clean energy future, and it’s exciting to see companies like Fervo push the technology to new depths,” Gates wrote.

Gates’ more than $1 billion Breakthrough Energy Ventures fund has contributed to the $982 million pool of money that Fervo has raised since its founding in 2017. Fervo is now a unicorn, meaning its valuation as a private company exceeds $1 billion. Its valuation has been estimated at $1.4 billion.

The Microsoft billionaire published the blog post on his Gates Notes website after touring the site of Fervo’s Cape Station geothermal project, which is under construction in Utah. Fervo says Cape Station will be the world’s largest geothermal plant, capable of someday producing up to 2 gigawatts of power.

Earlier this year, Fervo raised $206 million to put toward the development of Cape Station. Of that amount, $100 million came from Breakthrough Energy Catalyst, a green tech investment program backed by Gates, according to Inc.com.

The first phase of Cape Station is scheduled to be completed in 2026, with first-year power generation pegged at 100 megawatts. An additional 500 megawatts of power-producing capacity is slated to go online in 2028.

“Geothermal is one of the most promising ways to deliver clean energy that’s reliable and affordable,” Gates wrote.

In the blog post, Gates praised the simplicity of geothermal energy.

“The interior of the Earth is incredibly hot, and the deeper you go, the hotter the ground becomes,” he explained. “If you pump fluid deep enough to be warmed by this heat and then pump it back to the surface, you can turn the hot liquid into steam and use it to spin turbines and generate electricity — just like many other types of power plants.”

Gates noted that horizontal drilling is one of Fervo’s biggest innovations. The company extends its wells horizontally by as much as 5,000 feet at the deepest point. It couples horizontal drilling with hydraulic fracturing, or fracking, to extract geothermal energy from rock formations.

Most wells at Cape Station are 8,000 to 9,000 feet deep, and the deepest one is 15,000 feet below the surface, Gates pointed out.

Gates also emphasized the water-conserving, closed-system setup at Cape Station.

“Geothermal energy is one of the more climate-friendly sources of power, but one of its downsides is how much water it uses. … Fervo’s technology captures all the water that would’ve been lost and recirculates it underground to keep the system running,” he wrote.

Houston's Fervo Energy has secured new funding for Cape Station, its Utah geothermal energy plant. Photo courtesy Fervo Energy.

Fervo Energy lands $200 million in capital for new geothermal project

fresh funding

Houston-based Fervo Energy, a producer of geothermal power, has secured $205.6 million in capital to help finance its geothermal project in southern Utah.

The money will go toward the first and second phases of Cape Station, a geothermal energy plant being developed in Beaver County, Utah. Beaver County is roughly an equal distance between Salt Lake City and Las Vegas.

The $205.6 million in capital came from three sources:

  • $100 million in equity from Breakthrough Energy Catalyst, a Kirkland, Washington-based platform that invests in emissions-reducing projects.
  • $60 million addition to Fervo’s existing loan from Mercuria, a Swiss energy and commodities trader. The revolving loan now totals $100 million.
  • $45.6 million in additional bridge debt financing from XRL-ALC, an affiliate of Irvington, New York-based X-Caliber Rural Capital. X-Caliber is a USDA-approved lender. The initial bridge loan was $100 million.

The first phase of Cape Station will supply 100 megawatts of carbon-free electricity to the power grid starting next year. Another 400 megawatts of capacity is supposed to go online by 2028. Fervo has permission to expand Cape Station’s capacity to as much as 2 gigawatts. On an annual basis, 2 gigawatts can supply enough electricity to power about 1.4 million homes.

“These investments demonstrate what we’ve known all along: Fervo’s combination of technical excellence, commercial readiness, and market opportunity makes us a natural partner for serious energy capital. The confidence our investors have in Fervo and in the Cape asset affirms that next-generation geothermal is ready to play a defining role in America’s energy future,” David Ulrey, Fervo’s CFO, said in a news release.

The Meta and Sage Geosystems project is reportedly the first next-generation geothermal project located to the east of the Rocky Mountains. Rendering by Sage Geosystems and Meta

Meta taps Houston geothermal co. to power data center growth with clean energy

big tech

A Houston company has signed a new agreement with Meta Platforms Inc. — Facebook's parent company — to power the tech giant's data center growth.

Houston-based Sage Geosystems agreed to deliver up to 150 megawatts of new geothermal baseload power to Meta. The companies made the announcement this week at the United States Department Energy’s Catalyzing Next Generation Geothermal Development Workshop.

The deal is significant because it's the first next-generation geothermal project located to the east of the Rocky Mountains, the companies report in a news release.

“This announcement is the perfect example of how the public and private sector can work together to make the clean energy transition a reality,” Cindy Taff, CEO of Sage Geosystems, says in the release. “We are thrilled to be at the forefront of the next generation of geothermal technology and applaud the DOE for supporting the commercialization of innovation solutions.

"As energy demand continues to grow, the need for reliable, resilient and sustainable power is paramount and our partnership with Meta underscores the critical need for innovative and sustainable energy solutions like ours,” she continues.

The project's first phase will aim to be operating in 2027. The plans reflect how geothermal is being recognized as a growing carbon-free energy source in the country, and how Meta is committed to clean energy initiatives.

“The U.S. has seen unprecedented growth in demand for energy as our economy grows, the manufacturing sector booms thanks to the Biden-Harris Administration’s Investing in America agenda, and new industries like AI expand,” U.S. Energy Deputy Secretary David Turk says. “The Administration views this increased demand as a huge opportunity to add more clean, firm power to the grid and geothermal energy is a game-changer as we work to grow our clean power supply.”

Sage's technology — called Geopressured Geothermal System — works deep in the earth to develop energy storage and geothermal baseload power.

“Meta thanks the Department of Energy’s leadership on promoting and supporting the exploration of new energy sources like geothermal," Urvi Parekh, head of renewable energy at Meta, says. "That leadership supports Meta’s goal to enable the addition of reliable, affordable, and carbon-free power to the grid with this geothermal energy deal. We are excited to partner with such an innovative company like Sage Geosystems that is a proven leader in geothermal development on this project and beyond.”

Sage recently teamed up with a utility provider for an energy storage facility in the San Antonio metro area to build its three-megawatt EarthStore facility.

The company is also working on an exploratory geothermal project for the Army’s Fort Bliss post in Texas, which is the third U.S. Department of Defense geothermal initiative in the Lone Star State.

Things are heating up in Utah for Fervo Energy. Photo via fervoenergy.com

Houston company breaks ground on 'world's largest' geothermal project with next-generation tech

coming soon

Houston-based cleantech startup Fervo Energy has broken ground on what it's describing as the "world’s largest next-gen geothermal project."

Fervo says the a 400-milliwatt geothermal energy project in Cape Station, Utah, will start delivering carbon-free power to the grid in 2026, with full-scale production beginning in 2028.

The project, in southwest Utah, is about 240 miles southwest of Salt Lake City and about 240 miles northeast of Las Vegas. Cape Station is adjacent to the U.S. Department of Energy’s Frontier Observatory for Research in Geothermal Energy (FORGE) and near the Blundell geothermal power plant.

The company says Cape Station will generate about 6,600 construction jobs and 160 full-time jobs.

“Beaver County, Utah, is the perfect place to deploy our next-generation geothermal technology,” Tim Latimer, co-founder and CEO of Fervo, says in a news release. “The warmth and hospitality we have experienced from the communities of Milford and Beaver have allowed us to embark on a clean energy journey none of us could have imagined just a few years ago.”

In February, the U.S. Bureau of Land Management gave its blessing to the project, allowing Fervo to undertake exploration activities at the site.

“Geothermal innovations like those pioneered by Fervo will play a critical role in extending Utah’s energy leadership for generations to come,” says Utah Gov. Spencer Cox, who attended the groundbreaking ceremony.

Since being founded in 2017, Fervo has raised more than $180 million in funding. Its highest-profile investors are billionaires Jeff Bezos, Richard Branson and Bill Gates. They’re backing Fervo through Breakthrough Energy Ventures, whose managing director sits on Fervo’s board of directors.

Other investors include the Canada Pension Plan Investment Board (CPP Investments), DCVC, Devon Energy, Liberty Energy, Helmerich & Payne, Macquarie, the Grantham Foundation for the Protection of the Environment, Impact Science Ventures, and Prelude Ventures.

Fervo aims to generate more than one gigawatt of geothermal energy by 2030. On average, one gigawatt of power can provide electricity for 750,000 homes. Two coal-fired power plants can generate roughly the same amount of electricity.

Earlier this year, Fervo announced results of a test at Nevada’s Project Red site, which will supply power to Google data centers in the Las Vegas area. Fervo says the 30-day well test established Project Red as the “most productive enhanced geothermal system in history,” the company says. The test generated 3.5 megawatts of electricity.

In 2021, Fervo and Google signed the world’s first corporate agreement to produce geothermal power. Under the deal, Fervo will generate five megawatts of geothermal energy for Google through the Nevada project, which is set to go online later this year.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Google's $40B investment in Texas data centers includes energy infrastructure

The future of data

Google is investing a huge chunk of money in Texas: According to a release, the company will invest $40 billion on cloud and artificial intelligence (AI) infrastructure, with the development of new data centers in Armstrong and Haskell counties.

The company announced its intentions at a meeting on November 14 attended by federal, state, and local leaders including Gov. Greg Abbott who called it "a Texas-sized investment."

Google will open two new data center campuses in Haskell County and a data center campus in Armstrong County.

Additionally, the first building at the company’s Red Oak campus in Ellis County is now operational. Google is continuing to invest in its existing Midlothian campus and Dallas cloud region, which are part of the company’s global network of 42 cloud regions that deliver high-performance, low-latency services that businesses and organizations use to build and scale their own AI-powered solutions.

Energy demands

Google is committed to responsibly growing its infrastructure by bringing new energy resources onto the grid, paying for costs associated with its operations, and supporting community energy efficiency initiatives.

One of the new Haskell data centers will be co-located with — or built directly alongside — a new solar and battery energy storage plant, creating the first industrial park to be developed through Google’s partnership with Intersect and TPG Rise Climate announced last year.

Google has contracted to add more than 6,200 megawatts (MW) of net new energy generation and capacity to the Texas electricity grid through power purchase agreements (PPAs) with energy developers such as AES Corporation, Enel North America, Intersect, Clearway, ENGIE, SB Energy, Ørsted, and X-Elio.

Water demands

Google’s three new facilities in Armstrong and Haskell counties will use air-cooling technology, limiting water use to site operations like kitchens. The company is also contributing $2.6 million to help Texas Water Trade create and enhance up to 1,000 acres of wetlands along the Trinity-San Jacinto Estuary. Google is also sponsoring a regenerative agriculture program with Indigo Ag in the Dallas-Fort Worth area and an irrigation efficiency project with N-Drip in the Texas High Plains.

In addition to the data centers, Google is committing $7 million in grants to support AI-related initiatives in healthcare, energy, and education across the state. This includes helping CareMessage enhance rural healthcare access; enabling the University of Texas at Austin and Texas Tech University to address energy challenges that will arise with AI, and expanding AI training for Texas educators and students through support to Houston City College.

---

This article originally appeared on CultureMap.com.

Texas A&M's micro-nuclear reactor tops energy transition news to know

Trending News

Editor's note: The top energy transition news of November includes major energy initiatives from Texas universities and the creation of a new Carbon Measures coalition. Here are the most-read EnergyCapitalHTX stories from Nov. 1-15:

1. Micro-nuclear reactor to launch next year at Texas A&M innovation campus

Last Energy will build a 5-megawatt reactor at the Texas A&M-RELLIS campus. Photo courtesy Last Energy.

The Texas A&M University System and Last Energy plan to launch a micro-nuclear reactor pilot project next summer at the Texas A&M-RELLIS technology and innovation campus in Bryan. Washington, D.C.-based Last Energy will build a 5-megawatt reactor that’s a scaled-down version of its 20-megawatt reactor. The micro-reactor initially will aim to demonstrate safety and stability, and test the ability to generate electricity for the grid. Continue reading.

2. Baker Hughes to provide equipment for massive low-carbon ammonia plant

Baker Hughes will supply equipment for Blue Point Number One, a $4 billion low-carbon ammonia plant being developed in Louisiana. Photo courtesy Technip Energies.

Houston-based energy technology company Baker Hughes has been tapped to supply equipment for what will be the world’s largest low-carbon ammonia plant. French technology and engineering company Technip Energies will buy a steam turbine generator and compression equipment from Baker Hughes for Blue Point Number One, a $4 billion low-carbon ammonia plant being developed in Louisiana by a joint venture comprising CF Industries, JERA and Mitsui & Co. Technip was awarded a contract worth at least $1.1 billion to provide services for the Blue Point project. Continue reading.

3. Major Houston energy companies join new Carbon Measures coalition

The new Carbon Measures coalition will create a framework that eliminates double-counting of carbon pollution and attributes emissions to their sources. Photo via Getty Images.

Six companies with a large presence in the Houston area have joined a new coalition of companies pursuing a better way to track the carbon emissions of products they manufacture, purchase and finance. Houston-area members of the Carbon Measures coalition are Spring-based ExxonMobil; Air Liquide, whose U.S. headquarters is in Housto; Mitsubishi Heavy Industries, whose U.S. headquarters is in Houston; Honeywell, whose Performance Materials and Technologies business is based in Houston; BASF, whose global oilfield solutions business is based in Houston; and Linde, whose Linde Engineering Americas business is based in Houston. Continue reading.

4. Wind and solar supplied over a third of ERCOT power, report shows

A new report from the U.S. Energy Information Administration shows that wind and solar supplied more than 30 percent of ERCOT’s electricity in the first nine months of 2025. Photo via Unsplash.

Since 2023, wind and solar power have been the fastest-growing sources of electricity for the Electric Reliability Council of Texas (ERCOT) and increasingly are meeting stepped-up demand, according to a new report from the U.S. Energy Information Administration (EIA). The report says utility-scale solar generated 50 percent more electricity for ERCOT in the first nine months this year compared with the same period in 2024. Meanwhile, electricity generated by wind power rose 4 percent in the first nine months of this year versus the same period in 2024. Continue reading.

5. Rice University partners with Australian co. to boost mineral processing, battery innovation

Locksley Resources will provide antimony-rich feedstocks from a project in the Mojave Desert as part of a new partnership with Rice University that aims to develop scalable methods for extracting and utilizing antimony. Photo via locksleyresources.com.au.

Rice University and Australian mineral exploration company Locksley Resources have joined together in a research partnership to accelerate the development of antimony processing in the U.S. Antimony is a critical mineral used for defense systems, electronics and battery storage. Rice and Locksley will work together to develop scalable methods for extracting and utilizing antimony. Continue reading.

Energy sector AI spending is set to soar to $13B, report says

eyes on ai

Get ready for a massive increase in the amount of AI spending by oil and gas companies in the Houston area and around the country.

A new report from professional services firm Deloitte predicts AI will represent 57 percent of IT spending by U.S. oil and gas companies in 2029. That’s up from the estimated share of 23 percent in 2025.

According to the analysis, the amount of AI spending in the oil and gas industry will jump from an estimated $4 billion in 2025 to an estimated $13.4 billion in 2029—an increase of 235 percent.

Almost half of AI spending by U.S. oil and gas companies targets process optimization, according to Deloitte’s analysis of data from market research companies IDC and Gartner. “AI-driven analytics adjust drilling parameters and production rates in real time, improving yield and decision-making,” says the Deloitte report.

Other uses for AI in the oil and gas industry cited by Deloitte include:

  • Integrating infrastructure used by shale producers
  • Monitoring pipelines, drilling platforms, refineries, and other assets
  • Upskilling workers through AI-powered platforms
  • Connecting workers on offshore rigs via high-speed, real-time internet access supplied by satellites
  • Detecting and reporting leaks

The report says a new generation of technology, including AI and real-time analytics, is transforming office and on-site operations at oil and gas companies. The Trump administration’s “focus on AI innovation through supportive policies and investments could further accelerate large-scale adoption and digital transformation,” the report adds.

Chevron and ExxonMobil, the two biggest oil and gas companies based in the Houston area, continue to dive deeper into AI.

Chevron is taking advantage of AI to squeeze more insights from enormous datasets, VentureBeat reported.

“AI is a perfect match for the established, large-scale enterprise with huge datasets—that is exactly the tool we need,” Bill Braun, the company’s now-retired chief information officer, said at a VentureBeat event in May.

Meanwhile, AI enables ExxonMobil to conduct autonomous drilling in the waters off the coast of Guyana. ExxonMobil says its proprietary system improves drilling safety, boosts efficiency, and eliminates repetitive tasks performed by rig workers.

ExxonMobil is also relying on AI to help cut $15 billion in operating costs by 2027.

“There is a concerted effort to make sure that we’re really working hard to apply that new technology … to drive effectiveness and efficiency,” Darren Woods, executive chairman and CEO of ExxonMobil, said during a 2024 earnings call.