offshore optimization

Petrobras teams up with Houston co. to improve efficiency in drilling

GA Drilling will work with Petrobras’ R&D center to roll out an autonomous drilling system. Photo via Getty Images

Slovakian geothermal drilling technology company GA Drilling, whose U.S. headquarters is in Houston, has teamed up with Brazilian energy giant Petrobras to reduce well construction costs and well-drilling risks.

Under the new partnership, GA Drilling will work with Petrobras’ R&D center to roll out an autonomous drilling system that enables drilling at offshore wells from a light vessel instead of a costlier semi-submarine or drill ship.

“Taken together, the benefits of our drilling technologies equal better efficiency, leading to lower costs, [a] smaller operational footprint, and ultimately lower risk overall,” Igor Kočiš, co-founder and CEO of GA Drilling, says in a news release.

GA Drilling says its drilling system improves drilling efficiency and enables replacement of conventional drill pipes with lower-risk tubes. Features of the system include drilling automation and control systems, and real-time communications.

In April 2024, GA Drilling announced it had closed on $15 million in funding. Investors included Houston-based oil and gas drilling contractor Nabors Industries, the newly established Underground Ventures geothermal investment fund, and Slovakian venture capital firm Neulogy Ventures.

A year earlier, GA Drilling conducted the first public demonstration of its Anchorbit drilling tool at a Houston test well owned by Nabors. The tool is designed to simplify and improve drilling into high-temperature hard rock formations.

Trending News

A View From HETI

Researchers from Rice University say their recent findings could revolutionize power grids, making energy transmission more efficient. Image via Getty Images.

A new study from researchers at Rice University, published in Nature Communications, could lead to future advances in superconductors with the potential to transform energy use.

The study revealed that electrons in strange metals, which exhibit unusual resistance to electricity and behave strangely at low temperatures, become more entangled at a specific tipping point, shedding new light on these materials.

A team led by Rice’s Qimiao Si, the Harry C. and Olga K. Wiess Professor of Physics and Astronomy, used quantum Fisher information (QFI), a concept from quantum metrology, to measure how electron interactions evolve under extreme conditions. The research team also included Rice’s Yuan Fang, Yiming Wang, Mounica Mahankali and Lei Chen along with Haoyu Hu of the Donostia International Physics Center and Silke Paschen of the Vienna University of Technology. Their work showed that the quantum phenomenon of electron entanglement peaks at a quantum critical point, which is the transition between two states of matter.

“Our findings reveal that strange metals exhibit a unique entanglement pattern, which offers a new lens to understand their exotic behavior,” Si said in a news release. “By leveraging quantum information theory, we are uncovering deep quantum correlations that were previously inaccessible.”

The researchers examined a theoretical framework known as the Kondo lattice, which explains how magnetic moments interact with surrounding electrons. At a critical transition point, these interactions intensify to the extent that the quasiparticles—key to understanding electrical behavior—disappear. Using QFI, the team traced this loss of quasiparticles to the growing entanglement of electron spins, which peaks precisely at the quantum critical point.

In terms of future use, the materials share a close connection with high-temperature superconductors, which have the potential to transmit electricity without energy loss, according to the researchers. By unblocking their properties, researchers believe this could revolutionize power grids and make energy transmission more efficient.

The team also found that quantum information tools can be applied to other “exotic materials” and quantum technologies.

“By integrating quantum information science with condensed matter physics, we are pivoting in a new direction in materials research,” Si said in the release.

Trending News