SLB's OneSubsea will provide seawater injection systems to boost recovery and cut emissions at Petrobras' Búzios field. Photo courtesy of SLB

Houston energy technology company SLB announced a contract award by Petrobras to its OneSubsea joint venture for two subsea raw seawater injection systems to increase recovery from the prolific Búzios field in offshore Brazil.

The subsea RWI systems will work to increase the production of floating production storage and offloading (Petrobras FPSO) vessels that are currently bottlenecked in their water injection capacities.The RWI systems, once operational, can reduce greenhouse gas emissions per barrel of oil.

“As deepwater basins mature, we see more and more secondary recovery opportunities emerging,” Mads Hjelmeland, CEO of SLB OneSubsea, says in a news release. “Subsea raw seawater injection is a well-proven application with a strong business case that we think should become mainstream. By placing the system directly on the seabed, we free up space and reduce fuel needs for the FPSOs as well as lessen the power needs for the injection systems. It’s a win-win for Petrobras, and one that we are very excited about.”

SLB OneSubsea works to “optimize oil and gas production, decarbonize subsea operations, and unlock the large potential of subsea solutions to accelerate the energy transition,” per to the company.

SLB OneSubsea is contracted to provide two complete subsea RWI systems to support Petrobras’ FPSOs P-74 and P-75. They will consist of a subsea seawater injection pump, umbilical system and topside variable speed drive. In addition,the team will also provide technical support using AI-enabled Subsea Live services, which includes condition monitoring and access to domain experts.

“This contract will consolidate our solid local content presence in the country, contributed by the largest manufacturing plants and state-of-the-art subsea service facilities in Brazil,” Hjelmeland continues.

GA Drilling will work with Petrobras’ R&D center to roll out an autonomous drilling system. Photo via Getty Images

Petrobras teams up with Houston co. to improve efficiency in drilling

offshore optimization

Slovakian geothermal drilling technology company GA Drilling, whose U.S. headquarters is in Houston, has teamed up with Brazilian energy giant Petrobras to reduce well construction costs and well-drilling risks.

Under the new partnership, GA Drilling will work with Petrobras’ R&D center to roll out an autonomous drilling system that enables drilling at offshore wells from a light vessel instead of a costlier semi-submarine or drill ship.

“Taken together, the benefits of our drilling technologies equal better efficiency, leading to lower costs, [a] smaller operational footprint, and ultimately lower risk overall,” Igor Kočiš, co-founder and CEO of GA Drilling, says in a news release.

GA Drilling says its drilling system improves drilling efficiency and enables replacement of conventional drill pipes with lower-risk tubes. Features of the system include drilling automation and control systems, and real-time communications.

In April 2024, GA Drilling announced it had closed on $15 million in funding. Investors included Houston-based oil and gas drilling contractor Nabors Industries, the newly established Underground Ventures geothermal investment fund, and Slovakian venture capital firm Neulogy Ventures.

A year earlier, GA Drilling conducted the first public demonstration of its Anchorbit drilling tool at a Houston test well owned by Nabors. The tool is designed to simplify and improve drilling into high-temperature hard rock formations.

The three award honorees for OTC 2024 have been named and will be honored on May 5. Photo via otcnet.org

Annual offshore conference in Houston names honorees for leadership, sustainable efforts

otc 2024

The 2024 Offshore Technology Conference has revealed the three Distinguished Achievement Award recipients that will be recognized at the conference next month.

OTC, a conference that has served the offshore energy community for over 50 years, will bring 276,000 square feet of exhibit space to NRG Park and welcome over 31,000 attendees for more than 350 sessions. The awards reception will kick off the week on May 5.

One of the awards recipients named is Kerry J. Campbell, who will accept the OTC Distinguished Achievement Award for Individuals. Campbell was selected based on his "work in developing modern deepwater site characterization practice and for teaching and mentoring generations of site characterization professionals," reads the news release.

He's previously co-chaired sessions at OTC and served on a subcommittee for the organization, in addition to co-writing seventeen OTC papers. He retired from Fugro in 2020 after helping integrate 3D marine seismic data for engineering applications.

Petrobras will accept the OTC Distinguished Achievement Award for Companies, Organizations, and Institutions at the May banquet. The company was selected "for the deployment of a wide set of new technologies for the successful revitalization of the Marlim Field and the entire deepwater Campos Basin, unlocking new paths for mature deepwater asset redevelopment, with significant reduction in greenhouse gas emissions," per the release.

For about 50 years, the Campos Basin has been subjected to exploration and is known for various shallow water discoveries. In 1992, Petrobras was recognized for its deepwater development in Marlim, and over 30 years later, the company will be praised for its work redeveloping mature fields and the pioneering subsea, drilling, reservoir and decommissioning technologies.

The third and final award recipient is EnerGeo Alliance, which will receive the OTC Special Citation award for promoting efficiency and environmental sustainability within offshore seismic data collection.

"For more than 50 years, EnerGeo Alliance has been a stalwart in the quest for accessible, affordable energy around the globe, while also being a standard-bearer for safety and the environment," reads the release. "EneGeo Alliance has set the standard in the energy geoscience industry by establishing best practices and recommended guidance in key energy areas, including its Environmental Impact Assessment Handbook and Greenhouse Gas Emissions Guidance, for its members."

Virginia-based Leidos has extended its work with Houston-based Nauticus Robotics. Photo via LinkedIn

Engineering tech co. expands collaboration with Houston robotics startup in $2.1M contract extension

underwater moves

A major customer of Webster-based Nauticus Robotics, a maker of autonomous oceangoing robots, has bulked up its current contract.

Reston, Virginia-based Leidos has tacked on a $2.1 million extension to its existing contract with Nauticus. That brings Leidos’ total financial commitment from $14.5 million to $16.6 million.

In partnership with Leidos, Nauticus is developing next-generation underwater drones for business and military customers. These unmanned underwater vehicles are being designed to carry out tasks that are dangerous or impossible for human divers to do, such as mapping the ocean floor, studying sea creatures, and monitoring water pollution.

“This very important work combines great attributes from each company to deploy a truly novel subsea capability,” says Nicolaus Radford, founder and CEO of Nauticus.

Based on Nauticus’ Aquanaut product, these robots will feature the company’s toolKITT software, which supplies artificial intelligence capabilities to undersea vehicles.

“This work is the centerpiece of Nauticus’ excellent collaboration with Leidos,” says Radford, “and I look forward to continuing our mutual progress of advancing the state of the art in undersea vehicles.”

Founded in 2014 as Houston Mechatronics, Nauticus adopted its current branding in 2021. Last year, Nauticus became a publicly traded company through a merger with a “blank check” company called CleanTech Acquisition Corp.

During the first six months of 2023, Nauticus generated revenue of nearly $4 million, down from a little over $5.2 million in the same period last year. Its operating loss for the first half of 2023 was almost $12.7 million, up from slightly more than $5.2 million during the same time in 2022.

Nauticus attributes some of the revenue drop to delays in authorization of contracts with government agencies.

The company recently lined up a $15 million debt facility to bolster its operations.

“I’ve never been more optimistic about the future of Nauticus. We employ some of the best minds in the industry, and we are positioned with the right product at the right time to disrupt a $30 billion market,” Radford said earlier this month. “Demand from potential customers is high, but constructing our fleet is capital-intensive.”

More good news for Nauticus: It recently signed contracts with energy giants Shell and Petrobras. Financial terms weren’t disclosed.

The Shell contract involves a project in the Gulf of Mexico’s Princess oil and gas field that Nauticus says could lead to millions of dollars in additional contracts over the next few years. Shell operates the offshore field, which is around 40 miles southeast of New Orleans, and owns a nearly 50 percent stake in it.

Co-owners of the Princess project are Houston-based ConocoPhillips, Spring-based ExxonMobil, and London-based BP, whose North American headquarters is in Houston. In July, the Reuters news service reported that ConocoPhillips was eyeing a sale of its stake in the Princess field.

Under the contract with Petrobras, whose U.S. arm is based in Houston, Nauticus will dispatch its Aquanaut robot to support the Brazilian energy company’s offshore activities in South America. Nauticus says this deal “opens up a potential market opportunity” in Brazil exceeding $100 million a year.
Nauticus Robotics has secured a new customer, taking expanding its services to Brazil. Photo courtesy of Nauticus

Houston robotics company secures deal with Brazilian energy giant

sea change

Houston-based Nauticus Robotics, a developer of autonomous ocean robots, has landed a deal to supply its equipment to one of the world’s largest energy companies — a deal that eventually could blossom into $100 million worth of contracts.

Under the deal, Nauticus will dispatch its Aquanaut autonomous subsea robot to support offshore oil exploration activities carried out by Brazil’s Petrobras. Specifically, Aquanaut — propelled by artificial intelligence-enabled software — will supervise infield inspection services over a two-month span.

The deal with Brazil’s Petrobras represents Nauticus’ entry into the South American market and puts Nauticus in a position to score several Petrobras contracts that could collectively be valued at $100 million. Both companies are publicly traded.

Nicolaus Radford, founder and CEO of Nauticus, says Brazil offers a significant market opportunity for his company, as South America’s largest nation boasts one of the world’s most active offshore energy basins.

“A contract with [a] worldwide leading operator for Nauticus speaks to the state-of-the-art technologies of our autonomous robots as we further penetrate the global markets,” Radford says in a news release.

Petrobras is one of the world’s biggest offshore operators, managing 57 platforms, operating 10,000 miles of oil and gas pipelines, and producing the equivalent of 2.6 million barrels of oil per day. The company generated $124.47 billion in revenue last year.

Founded in 2014, Nauticus posted revenue of $11.4 million in 2022. The company went public last year through a $560 million merger with a special purpose acquisition company (SPAC). Nauticus recently opened a new office in The Ion, in addition to their Webster office.

“I see Nauticus being the preeminent ocean robotics company. I want Nauticus to be an empire. It starts small but it grows — and it grows in many different ways, and we’re exploring all of those different ways to grow,” Radford told InnovationMap in May. “We’re leading a technology renaissance in the marine space — and that happens only a few times in an industry.”

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Experts on U.S. energy infrastructure, sustainability, and the future of data

Guest column

Digital infrastructure is the dominant theme in energy and infrastructure, real estate and technology markets.

Data, the byproduct and primary value generated by digital infrastructure, is referred to as “the fifth utility,” along with water, gas, electricity and telecommunications. Data is created, aggregated, stored, transmitted, shared, traded and sold. Data requires data centers. Data centers require energy. The United States is home to approximately 40% of the world's data centers. The U.S. is set to lead the world in digital infrastructure advancement and has an opportunity to lead on energy for a very long time.

Data centers consume vast amounts of electricity due to their computational and cooling requirements. According to the United States Department of Energy, data centers consume “10 to 50 times the energy per floor space of a typical commercial office building.” Lawrence Berkeley National Laboratory issued a report in December 2024 stating that U.S. data center energy use reached 176 TWh by 2023, “representing 4.4% of total U.S. electricity consumption.” This percentage will increase significantly with near-term investment into high performance computing (HPC) and artificial intelligence (AI). The markets recognize the need for digital infrastructure build-out and, developers, engineers, investors and asset owners are responding at an incredible clip.

However, the energy demands required to meet this digital load growth pose significant challenges to the U.S. power grid. Reliability and cost-efficiency have been, and will continue to be, two non-negotiable priorities of the legal, regulatory and quasi-regulatory regime overlaying the U.S. power grid.

Maintaining and improving reliability requires physical solutions. The grid must be perfectly balanced, with neither too little nor too much electricity at any given time. Specifically, new-build, physical power generation and transmission (a topic worthy of another article) projects must be built. To be sure, innovative financial products such as virtual power purchase agreements (VPPAs), hedges, environmental attributes, and other offtake strategies have been, and will continue to be, critical to growing the U.S. renewable energy markets and facilitating the energy transition, but the U.S. electrical grid needs to generate and move significantly more electrons to support the digital infrastructure transformation.

But there is now a third permanent priority: sustainability. New power generation over the next decade will include a mix of solar (large and small scale, offsite and onsite), wind and natural gas resources, with existing nuclear power, hydro, biomass, and geothermal remaining important in their respective regions.

Solar, in particular, will grow as a percentage of U.S grid generation. The Solar Energy Industries Association (SEIA) reported that solar added 50 gigawatts of new capacity to the U.S. grid in 2024, “the largest single year of new capacity added to the grid by an energy technology in over two decades.” Solar is leading, as it can be flexibly sized and sited.

Under-utilized technology such as carbon capture, utilization and storage (CCUS) will become more prominent. Hydrogen may be a potential game-changer in the medium-to-long-term. Further, a nuclear power renaissance (conventional and small modular reactor (SMR) technologies) appears to be real, with recent commitments from some of the largest companies in the world, led by technology companies. Nuclear is poised to be a part of a “net-zero” future in the United States, also in the medium-to-long term.

The transition from fossil fuels to zero carbon renewable energy is well on its way – this is undeniable – and will continue, regardless of U.S. political and market cycles. Along with reliability and cost efficiency, sustainability has become a permanent third leg of the U.S. power grid stool.

Sustainability is now non-negotiable. Corporate renewable and low carbon energy procurement is strong. State renewable portfolio standards (RPS) and clean energy standards (CES) have established aggressive goals. Domestic manufacturing of the equipment deployed in the U.S. is growing meaningfully and in politically diverse regions of the country. Solar, wind and batteries are increasing less expensive. But, perhaps more importantly, the grid needs as much renewable and low carbon power generation as possible - not in lieu of gas generation, but as an increasingly growing pairing with gas and other technologies. This is not an “R” or “D” issue (as we say in Washington), and it's not an “either, or” issue, it's good business and a physical necessity.

As a result, solar, wind and battery storage deployment, in particular, will continue to accelerate in the U.S. These clean technologies will inevitably become more efficient as the buildout in the U.S. increases, investments continue and technology advances.

At some point in the future (it won’t be in the 2020s, it could be in the 2030s, but, more realistically, in the 2040s), the U.S. will have achieved the remarkable – a truly modern (if not entirely overhauled) grid dependent largely on a mix of zero and low carbon power generation and storage technology. And when this happens, it will have been due in large part to the clean technology deployment and advances over the next 10 to 15 years resulting from the current digital infrastructure boom.

---

Hans Dyke and Gabbie Hindera are lawyers at Bracewell. Dyke's experience includes transactions in the electric power and oil and gas midstream space, as well as transactions involving energy intensive industries such as data storage. Hindera focuses on mergers and acquisitions, joint ventures, and public and private capital market offerings.

Rice researchers' quantum breakthrough could pave the way for next-gen superconductors

new findings

A new study from researchers at Rice University, published in Nature Communications, could lead to future advances in superconductors with the potential to transform energy use.

The study revealed that electrons in strange metals, which exhibit unusual resistance to electricity and behave strangely at low temperatures, become more entangled at a specific tipping point, shedding new light on these materials.

A team led by Rice’s Qimiao Si, the Harry C. and Olga K. Wiess Professor of Physics and Astronomy, used quantum Fisher information (QFI), a concept from quantum metrology, to measure how electron interactions evolve under extreme conditions. The research team also included Rice’s Yuan Fang, Yiming Wang, Mounica Mahankali and Lei Chen along with Haoyu Hu of the Donostia International Physics Center and Silke Paschen of the Vienna University of Technology. Their work showed that the quantum phenomenon of electron entanglement peaks at a quantum critical point, which is the transition between two states of matter.

“Our findings reveal that strange metals exhibit a unique entanglement pattern, which offers a new lens to understand their exotic behavior,” Si said in a news release. “By leveraging quantum information theory, we are uncovering deep quantum correlations that were previously inaccessible.”

The researchers examined a theoretical framework known as the Kondo lattice, which explains how magnetic moments interact with surrounding electrons. At a critical transition point, these interactions intensify to the extent that the quasiparticles—key to understanding electrical behavior—disappear. Using QFI, the team traced this loss of quasiparticles to the growing entanglement of electron spins, which peaks precisely at the quantum critical point.

In terms of future use, the materials share a close connection with high-temperature superconductors, which have the potential to transmit electricity without energy loss, according to the researchers. By unblocking their properties, researchers believe this could revolutionize power grids and make energy transmission more efficient.

The team also found that quantum information tools can be applied to other “exotic materials” and quantum technologies.

“By integrating quantum information science with condensed matter physics, we are pivoting in a new direction in materials research,” Si said in the release.

Oxy subsidiary granted landmark EPA permits for carbon capture facility

making progress

Houston’s Occidental Petroleum Corp., or Oxy, and its subsidiary 1PointFive announced that the U.S Environmental Protection Agency approved its Class VI permits to sequester carbon dioxide captured from its STRATOS Direct Air Capture (DAC) facility near Odessa. These are the first such permits issued for a DAC project, according to a news release.

The $1.3 billion STRATOS project, which 1PointFive is developing through a joint venture with investment manager BlackRock, is designed to capture up to 500,000 metric tons of CO2 annually and is expected to begin commercial operations this year. DAC technology pulls CO2 from the air at any location, not just where carbon dioxide is emitted. Major companies, such as Microsoft and AT&T, have secured carbon removal credit agreements through the project.

The permits are issued under the Safe Drinking Water Act's Underground Injection Control program. The captured CO2 will be stored in geologic formations more than a mile underground, meeting the EPA’s review standards.

“This is a significant milestone for the company as we are continuing to develop vital infrastructure that will help the United States achieve energy security,” Vicki Hollub, Oxy president and CEO, said in a news release.“The permits are a catalyst to unlock value from carbon dioxide and advance Direct Air Capture technology as a solution to help organizations address their emissions or produce vital resources and fuels.”

Additionally, Oxy and 1PointFive announced the signing of a 25-year offtake agreement for 2.3 million metric tons of CO2 per year from CF Industries’ upcoming Bluepoint low-carbon ammonia facility in Ascension Parish, Louisiana.

The captured CO2 will be transported to and stored at 1PointFive’s Pelican Sequestration Hub, which is currently under development. Eventually, 1PointFive’s Pelican hub in Louisiana will include infrastructure to safely and economically sequester industrial emissions in underground geologic formations, similar to the STRATOS project.

“CF Industries’ and its partners' confidence in our Pelican Sequestration Hub is a validation of our expertise managing carbon dioxide and how we collaborate with industrial organizations to become their commercial sequestration partner,” Jeff Alvarez, President of 1PointFive Sequestration, said in a news release.

1PointFive is storing up to 20 million tons of CO2 per year, according to the company.

“By working together, we can unlock the potential of American manufacturing and energy production, while advancing industries that deliver high-quality jobs and economic growth,” Alvarez said in a news release.