GA Drilling will work with Petrobras’ R&D center to roll out an autonomous drilling system. Photo via Getty Images

Slovakian geothermal drilling technology company GA Drilling, whose U.S. headquarters is in Houston, has teamed up with Brazilian energy giant Petrobras to reduce well construction costs and well-drilling risks.

Under the new partnership, GA Drilling will work with Petrobras’ R&D center to roll out an autonomous drilling system that enables drilling at offshore wells from a light vessel instead of a costlier semi-submarine or drill ship.

“Taken together, the benefits of our drilling technologies equal better efficiency, leading to lower costs, [a] smaller operational footprint, and ultimately lower risk overall,” Igor Kočiš, co-founder and CEO of GA Drilling, says in a news release.

GA Drilling says its drilling system improves drilling efficiency and enables replacement of conventional drill pipes with lower-risk tubes. Features of the system include drilling automation and control systems, and real-time communications.

In April 2024, GA Drilling announced it had closed on $15 million in funding. Investors included Houston-based oil and gas drilling contractor Nabors Industries, the newly established Underground Ventures geothermal investment fund, and Slovakian venture capital firm Neulogy Ventures.

A year earlier, GA Drilling conducted the first public demonstration of its Anchorbit drilling tool at a Houston test well owned by Nabors. The tool is designed to simplify and improve drilling into high-temperature hard rock formations.

In a Q&A with EnergyCapital, Guillermo Sierra of Nabors Industries explains how the 70-year-old company is navigating the energy transition. Photo via LinkedIn

Why Nabors wants to be an early leader within the energy transition

Q&A

With over 70 years of experience, Nabors Industries has established itself as one of the largest land contract drilling companies in the world, as well as a provider of offshore platform rigs in the United States and international markets. But how is the company thinking of its next decades amid the energy transition?

Considering the role Nabors is playing in the future of energy is Houston-based Guillermo Sierra's job as vice president of energy transition. In a Q&A with EnergyCapital, he explains how the company envisions its future as an energy leader and what all that entails, including sourcing new technologies — sometimes from promising startups like Sage Geosystems.

EnergyCapital: Tell me about Nabors' commitment to the energy transition. What are your responsibilities leading this initiative?

Guillermo Sierra: Understanding that no single source today consistently delivers affordable, reliable and responsible energy, Nabors sees its future innovating solutions for hydrocarbons and clean energy while removing the tradeoffs between them. “Energy Without Compromise” is the vision guiding these efforts. Ultimately, we view three critical paths for the industry and ourselves to realize this:

  • Embrace energy innovation over energy exclusion. Too often the energy transition conversation is about excluding particular sources when we should be focused on solving challenges or overcoming limitations with technology. Oil and gas provide affordable and reliable energy but we must address emissions. Renewables are a greener solution but powering society, heavy industries, and hard-to-abate sectors requires sources that are clean, scalable, and baseload-seeking. For our part, we are lowering the carbon intensity of oil and gas operations with AI-based engine management software, fuel enhancers, highline power solutions, energy storage and forthcoming hydrogen injection systems while also investing in geothermal, concentrated solar power, alternative energy storage, emissions monitoring, hydrogen, and advanced materials, to make renewables a viable solution to decarbonize the industrial and energy industries.
  • Capitalize on strengths and adjacencies. Companies should seek opportunities to apply skillsets and competencies to advance other industries in the pursuit of a sustainable future. It is easy to see how our drilling expertise is valuable to the geothermal industry. Those companies need to drill wells and use technology that’s been developed by the oil and gas industry for decades to produce heat instead of hydrocarbons. Beyond the drill bit though, companies in the broader clean energy community see tremendous strategic value in partnering with Nabors. Our robotics, remote operations, software, automation, AI, manufacturing and engineering capabilities, global customer base of some of the world’s largest companies, worldwide vendor relationships and supply chain can be used to help startups grow and scale much more quickly.
  • Collaborate to accelerate progress. The proverb is if you want to go fast, go alone. If you want to go deep or go far, go together. Working together and leveraging collective strengths will help us solve some of the most meaningful challenges. There’s room for us all and we need to work together to achieve emissions goals.

EC: When considering a clean tech company, what are the top qualities driving your investment decisions? How did Sage Geosystems fit what you were looking for?

GS: Traditionally, renewables have stumbled some in the power business because they are intermittent and therefore not dispatchable or reliable baseload. There are also safety, supply chain, and environmental challenges to overcome with lithium-ion batteries and the lack of circularity of panels, blades, and other equipment. Additionally, to decarbonize industrial processes, you need clean and efficient sources of heat – which have largely been nonexistent. And the broader industrials complex needs green fuels, hydrogen and sustainable aviation fuel to eliminate their carbon footprint.

Therefore we believe the world needs clean, renewable, scalable, and baseload/dispatchable generation, and alternatives to today’s chemical-based energy storage. When we evaluate our investments, this is what we’re ultimately seeking.

Sage checks every one of these boxes. The company envisions producing renewable baseload power from geothermal and has novel solutions to energy storage. And unlike many geothermal companies, their approach is deployable today with off the shelf technologies.

EC: What role do you see enhanced geothermal playing in the energy transition?

GS: In my opinion, geothermal has been the gaping hole so to speak in net zero plans from companies and governments. Less than 1 percent of the earth is cooler than 1,000 degrees Celsius. Heat gradients needed are miles away while the sun is 93 million miles away. The oil and gas industry has spent decades perfecting how we drill safely and efficiently. We have near limitless energy beneath our feet and have the tools to tap it. Now we need the focus and capital of the broader energy complex.

EC: How big are your long-term aspirations for Nabors in regards to the energy transition?

GS: I believe the energy transition will represent one of the biggest reallocations of capital in human history. By some estimates, some $300 trillion is expected to spent. We want to be a leader. We want in early. We believe we have the skills, competencies, workforce, relationships, and scale to make a meaningful impact and we are taking action.

———

This conversation has been edited for brevity and clarity.

Houston startup Sage Geosystems released the results of its pilot at a Shell-drilled oil well in the Rio Grande Valley’s Starr County. Photo via sagegeosystems.com

Houston-based geothermal energy startup releases promising results of Texas pilot

hot off the press

As it seeks an additional $30 million in series A funding, Houston startup Sage Geosystems has released promising results from a test of its technology for underground storage of geothermal energy.

Sage says the pilot project, conducted at a Shell-drilled oil well in the Rio Grande Valley’s Starr County, showed the company’s long-term energy storage can compete on a cost basis with lithium-ion battery storage, hydropower storage, and natural gas-powered peaker plants. Peaker plants supply power during periods of peak energy demand.

Furthermore, Sage’s geothermal technology will provide more power capacity at half the cost of other advanced geothermal systems, the company says.

Sage’s storage system retrofits oil and gas wells with the company’s geothermal technology. But the company says its technology “can be deployed virtually anywhere.”

The system relies on mechanical storage instead of battery storage. In mechanical storage, heat, water, or air works in tandem with compressors, turbines, and other machinery. By contrast, battery storage depends on chemistry to get the job done.

“We have cracked the code to provide the perfect complement to renewable energy. … The opportunities for our energy storage to provide power are significant — from remote mining operations to data centers to solving energy poverty in remote locations,” former Shell executive Cindy Taff, CEO of Sage, says in a September 12 news release.

Sage says its storage capacity can be connected to existing power grids, or it can develop microgrids that harness stored energy.

An August 2023 article in The New York Times explained that Sage “is pursuing fracked wells that act as batteries. When there’s surplus electricity on the grid, water gets pumped into the well. In times of need, pressure and heat in the fractures pushes water back up, delivering energy.”

The pilot project, a joint venture between Sage and the Bureau of Economic Ecology at the University of Texas at Austin, was performed as part of a feasibility study financed by the Air Force. Now that the test results are in, Sage plans to build a prototype geothermal project at the Air Force’s Ellington Field Joint Reserve Base in Houston.

Sage says another feasibility study is underway in the Middle East in partnership with an unnamed oil and gas company.

Founded in 2020, Sage plans to raise another $30 million to accompany its previous series A funding.

The Virya climate fund and Houston-based drilling contractor Nabors Industries helped finance the pilot project in Starr County.

Last year, Sage announced it received an undisclosed amount of equity from Houston-based Ignis H2 Energy, a geothermal exploration and development company, and Dutch energy company Geolog International. Also last year, Sage said Nabors and Virya had teamed up for a $12 million investment in the startup.

Nabors executive Subodh Saxena challenged leaders to think more like Generation Z at OTC2023. Photo courtesy of nabors.com

Drilling executive calls for a new course of action to achieve success

EMPOWERING TRANSITION

Gone are the days of people, process, and technology. Welcome to purpose, partnering, and governance.

In the early morning hours of the third day of OTC2023, Subodh Saxena, senior vice president at Nabors Industries, succinctly summarized both the challenges and opportunities faced by an industry in the middle of an identity crisis.

The upstream energy industry focused the better part of the last two decades on physical safety, division and clarity of responsibilities, and technology adoption and adaptation. Rightfully so, given the Macondo incident of 2010, the Enron collapse in 2002, and the general wildfire growth of technology in the workplace over the same time frame.

But as leadership that came of age during these tragedies takes the reigns, a new set of challenges arises. Consistent lack of positive financial returns, a shrinking talent pool, and of course, the climate crisis, combine to form the perfect storm for an industry just trying to manage the rising and falling tides of unstable commodity pricing.

To avoid completely capsizing during this squall in which the industry finds itself, Saxena describes three opportunities for improvement.

  • Attracting new talent by creating psychological safety in our workplaces and improving the perception of technology adaptation in the industry
  • Embracing a collaborative approach to building new solutions to limit the amount of siloed rework that currently stymies rapid advancement
  • Improved financial discipline with greater honesty about ROI for the entire supply chain

“We have a mindset in the industry, that we have to build everything ourselves," Saxena laments. "We have to learn to partner because [if] every company invests in new technology to create transition, whether that's hydrogen or any other source of green energy, that return on invested capital is going to become negative. We need to learn to collaborate to ensure that we are all going to be successful.”

The requests made by Saxena represent a growing movement within the incumbent industry to think not of the energy transition as a shift from one energy source to another but as a transition in mindset. Collaboration is the name of the game now, as are mindfulness, responsibility, and above all else, sustainability.

Revisiting purpose, partnering, and governance to identify room for improvement will ultimately determine whether organizations will sink or sail.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Innovative Houston clean hydrogen company expands to Brazil

on the move

Houston biotech company Cemvita has expanded into Brazil. The company officially established a new subsidiary in the country under the same name.

According to an announcement made earlier this month, the expansion aims to capitalize on Brazil’s progressive regulatory framework, including Brazil’s Fuel of the Future Law, which was enacted in 2024. The company said the expansion also aims to coincide with the 2025 COP30, the UN’s climate change conference, which will be hosted in Brazil in November.

Cemvita utilizes synthetic biology to transform carbon emissions into valuable bio-based chemicals.

“For decades Brazil has pioneered the bioeconomy, and now the time has come to create the future of the circular bioeconomy,” Moji Karimi, CEO of Cemvita, said in a news release. “Our vision is to combine the innovation Cemvita is known for with Brazil’s expertise and resources to create an ecosystem where waste becomes opportunity and sustainability drives growth. By joining forces with Brazilian partners, Cemvita aims to build on Brazil’s storied history in the bioeconomy while laying the groundwork for a circular and sustainable future.”

The Fuel of the Future Law mandates an increase in the biodiesel content of diesel fuel, starting from 15 percent in March and increasing to 20 percent by 2030. It also requires the adoption of Sustainable Aviation Fuel (SAF) and for domestic flights to reduce greenhouse gas emissions by 1 percent starting in 2027, growing to 10 percent reduction by 2037.

Cemvita agreed to a 20-year contract that specified it would supply up to 50 million gallons of SAF annually to United Airlines in 2023.

"This is all made possible by our innovative technology, which transforms carbon waste into value,” Marcio Da Silva, VP of Innovation, said in a news release. “Unlike traditional methods, it requires neither a large land footprint nor clean freshwater, ensuring minimal environmental impact. At the same time, it produces high-value green chemicals—such as sustainable oils and biofuels—without competing with the critical resources needed for food production."

In 2024, Cemvita became capable of generating 500 barrels per day of sustainable oil from carbon waste at its first commercial plant. As a result, Cemvita quadrupled output at its Houston plant. The company had originally planned to reach this milestone in 2029.

Capitalism and climate: How financial shifts will shape our behavior

guest column

I never imagined I would see Los Angeles engulfed in flames in this way in my lifetime. As someone who has devoted years to studying climate science and advocating for climate technology solutions, I'm still caught off guard by the immediacy of these disasters. A part of me wants to believe the intensifying hurricanes, floods, and wildfires are merely an unfortunate string of bad luck. Whether through misplaced optimism or a subconscious shield of denial, I hadn't fully processed that these weren't just harbingers of a distant future, but our present reality. The recent fires have shattered that denial, bringing to mind the haunting prescience of the movie Don't Look Up. Perhaps we aren't as wise as we fancy ourselves to be.

The LA fires aren't an isolated incident. They're part of a terrifying pattern: the Canadian wildfires that darkened our skies, the devastating floods in Spain and Pakistan, and the increasingly powerful hurricanes in the Gulf. A stark new reality is emerging for climate-vulnerable cities, and whether we acknowledge the underlying crisis or not, climate change is making its presence felt – not just in death and destruction, but in our wallets.

The insurance industry, with its cold actuarial logic, is already responding. Even before the recent LA fires, major insurers like State Farm and Allstate had stopped writing new home policies in California, citing unmanageable wildfire risks. In the devastated Palisades area, 70% of homes had lost their insurance coverage before disaster struck. While some homeowners may have enrolled in California's limited FAIR plan, others likely went without coverage. Now, the FAIR plan faces $5.9 billion in potential claims, far exceeding its reinsurance backup – a shortfall that promises delayed payments and costlier coverage.

The insurance crisis is reverberating across the nation, and Houston sits squarely in its path. As a city all too familiar with the destructive power of extreme weather, we're experiencing our own reckoning. The Houston Chronicle recently reported that local homeowners are paying a $3,740 annually for insurance – nearly triple the national average and 60% higher than the Texas state average. Our region isn't just listed among the most expensive areas for home insurance; it's identified as one of the most vulnerable to climate hazards.

For Houston homeowners, Hurricane Harvey taught us a harsh lesson: flood zones are merely suggestions, not guarantees. The next major hurricane won't respect the city's floodplain designations. This reality poses a sobering question: Would you risk having your largest asset – your home – uninsured when flooding becomes increasingly likely in the next decade or two?

For most Americans, home equity represents one of the largest components of household wealth, a crucial stepping stone to financial security and generational advancement. Insurance isn't just about protecting physical property; it's about preserving the foundation of middle-class economic stability. When insurance becomes unavailable or unaffordable, it threatens the very basis of financial security for millions of families.

The insurance industry's retreat from vulnerable markets – as evidenced by Progressive and Foremost Insurance's withdrawal from writing new policies in Texas – is more than a business decision. It's a market signal. These companies are essentially pricing in the reality of climate change, whether we choose to call it that or not.

What we're witnessing is the market beginning to price us out of areas where we've either built unsustainably or perhaps should never have built at all. This isn't just about insurance rates; it's about the future viability of entire communities and regional economies. The invisible hand of the market is doing what political will has failed to do: forcing us to confront the true costs of our choices in a warming world.

Insurance companies aren't the only ones sounding the alarm. Lenders and investors are quietly rewriting the rules of capital access based on climate risk. Banks are adjusting mortgage terms and raising borrowing costs in vulnerable areas, while major investment firms are factoring carbon intensity into their lending decisions. Companies with higher environmental risks have faced higher loan spreads and borrowing costs – a trend that's accelerating as climate impacts intensify. This financial reckoning is creating a new economic geography, where access to capital increasingly depends on climate resilience.

The insurance crisis is the canary in the coal mine, warning us of the systemic risks ahead. As actuaries and risk managers factor climate risks into their models, we're seeing the beginning of a profound economic shift that will ripple far beyond housing, affecting businesses, agriculture, and entire regional economies. The question isn't whether we'll adapt to this new reality, but how much it will cost us – in both financial and human terms – before we finally act.

---

Nada Ahmed is the founding partner at Houston-based Energy Tech Nexus.

Houston renewables developer powers two new California solar parks

now open

EDP Renewables North America LLC, a Houston-based developer, owner, and operator of renewable energy projects, has unveiled a solar energy park in California whose customers are Houston-based Shell Energy North America and the Eureka, California-based Redwood Coast Energy Authority.

Sandrini I & II Solar Energy Park, located near Bakersfield, is capable of supplying 300 megawatts of power. The park was completed in two phases.

“Sandrini I & II represent EDP Renewables’ continued commitment to investing in California and are a direct contribution to California's admirable target of achieving 100 percent clean electricity by 2045,” says Sandhya Ganapathy, CEO of EDP. “The Golden State is known for its leadership in solar energy, and EDP Renewables is elated to meet the growing demand for reliable clean energy sources.”

Shell signed a 15-year deal to buy power from the 200-megawatt Sandrini I, and the Redwood Coast Energy Authority signed a 15-year deal to buy power from the 100-megawatt Sandrini II.

In July, EDP announced the opening of the 210-megawatt Pearl River Solar Park in Mississippi. Earlier in 2024, the company debuted the 175-megawatt Crooked Lake Solar Park in Arkansas and the 74-megawatt Misenheimer Solar Park in North Carolina. Click here to read more.