GA Drilling will work with Petrobras’ R&D center to roll out an autonomous drilling system. Photo via Getty Images

Slovakian geothermal drilling technology company GA Drilling, whose U.S. headquarters is in Houston, has teamed up with Brazilian energy giant Petrobras to reduce well construction costs and well-drilling risks.

Under the new partnership, GA Drilling will work with Petrobras’ R&D center to roll out an autonomous drilling system that enables drilling at offshore wells from a light vessel instead of a costlier semi-submarine or drill ship.

“Taken together, the benefits of our drilling technologies equal better efficiency, leading to lower costs, [a] smaller operational footprint, and ultimately lower risk overall,” Igor Kočiš, co-founder and CEO of GA Drilling, says in a news release.

GA Drilling says its drilling system improves drilling efficiency and enables replacement of conventional drill pipes with lower-risk tubes. Features of the system include drilling automation and control systems, and real-time communications.

In April 2024, GA Drilling announced it had closed on $15 million in funding. Investors included Houston-based oil and gas drilling contractor Nabors Industries, the newly established Underground Ventures geothermal investment fund, and Slovakian venture capital firm Neulogy Ventures.

A year earlier, GA Drilling conducted the first public demonstration of its Anchorbit drilling tool at a Houston test well owned by Nabors. The tool is designed to simplify and improve drilling into high-temperature hard rock formations.

In a Q&A with EnergyCapital, Guillermo Sierra of Nabors Industries explains how the 70-year-old company is navigating the energy transition. Photo via LinkedIn

Why Nabors wants to be an early leader within the energy transition

Q&A

With over 70 years of experience, Nabors Industries has established itself as one of the largest land contract drilling companies in the world, as well as a provider of offshore platform rigs in the United States and international markets. But how is the company thinking of its next decades amid the energy transition?

Considering the role Nabors is playing in the future of energy is Houston-based Guillermo Sierra's job as vice president of energy transition. In a Q&A with EnergyCapital, he explains how the company envisions its future as an energy leader and what all that entails, including sourcing new technologies — sometimes from promising startups like Sage Geosystems.

EnergyCapital: Tell me about Nabors' commitment to the energy transition. What are your responsibilities leading this initiative?

Guillermo Sierra: Understanding that no single source today consistently delivers affordable, reliable and responsible energy, Nabors sees its future innovating solutions for hydrocarbons and clean energy while removing the tradeoffs between them. “Energy Without Compromise” is the vision guiding these efforts. Ultimately, we view three critical paths for the industry and ourselves to realize this:

  • Embrace energy innovation over energy exclusion. Too often the energy transition conversation is about excluding particular sources when we should be focused on solving challenges or overcoming limitations with technology. Oil and gas provide affordable and reliable energy but we must address emissions. Renewables are a greener solution but powering society, heavy industries, and hard-to-abate sectors requires sources that are clean, scalable, and baseload-seeking. For our part, we are lowering the carbon intensity of oil and gas operations with AI-based engine management software, fuel enhancers, highline power solutions, energy storage and forthcoming hydrogen injection systems while also investing in geothermal, concentrated solar power, alternative energy storage, emissions monitoring, hydrogen, and advanced materials, to make renewables a viable solution to decarbonize the industrial and energy industries.
  • Capitalize on strengths and adjacencies. Companies should seek opportunities to apply skillsets and competencies to advance other industries in the pursuit of a sustainable future. It is easy to see how our drilling expertise is valuable to the geothermal industry. Those companies need to drill wells and use technology that’s been developed by the oil and gas industry for decades to produce heat instead of hydrocarbons. Beyond the drill bit though, companies in the broader clean energy community see tremendous strategic value in partnering with Nabors. Our robotics, remote operations, software, automation, AI, manufacturing and engineering capabilities, global customer base of some of the world’s largest companies, worldwide vendor relationships and supply chain can be used to help startups grow and scale much more quickly.
  • Collaborate to accelerate progress. The proverb is if you want to go fast, go alone. If you want to go deep or go far, go together. Working together and leveraging collective strengths will help us solve some of the most meaningful challenges. There’s room for us all and we need to work together to achieve emissions goals.

EC: When considering a clean tech company, what are the top qualities driving your investment decisions? How did Sage Geosystems fit what you were looking for?

GS: Traditionally, renewables have stumbled some in the power business because they are intermittent and therefore not dispatchable or reliable baseload. There are also safety, supply chain, and environmental challenges to overcome with lithium-ion batteries and the lack of circularity of panels, blades, and other equipment. Additionally, to decarbonize industrial processes, you need clean and efficient sources of heat – which have largely been nonexistent. And the broader industrials complex needs green fuels, hydrogen and sustainable aviation fuel to eliminate their carbon footprint.

Therefore we believe the world needs clean, renewable, scalable, and baseload/dispatchable generation, and alternatives to today’s chemical-based energy storage. When we evaluate our investments, this is what we’re ultimately seeking.

Sage checks every one of these boxes. The company envisions producing renewable baseload power from geothermal and has novel solutions to energy storage. And unlike many geothermal companies, their approach is deployable today with off the shelf technologies.

EC: What role do you see enhanced geothermal playing in the energy transition?

GS: In my opinion, geothermal has been the gaping hole so to speak in net zero plans from companies and governments. Less than 1 percent of the earth is cooler than 1,000 degrees Celsius. Heat gradients needed are miles away while the sun is 93 million miles away. The oil and gas industry has spent decades perfecting how we drill safely and efficiently. We have near limitless energy beneath our feet and have the tools to tap it. Now we need the focus and capital of the broader energy complex.

EC: How big are your long-term aspirations for Nabors in regards to the energy transition?

GS: I believe the energy transition will represent one of the biggest reallocations of capital in human history. By some estimates, some $300 trillion is expected to spent. We want to be a leader. We want in early. We believe we have the skills, competencies, workforce, relationships, and scale to make a meaningful impact and we are taking action.

———

This conversation has been edited for brevity and clarity.

Houston startup Sage Geosystems released the results of its pilot at a Shell-drilled oil well in the Rio Grande Valley’s Starr County. Photo via sagegeosystems.com

Houston-based geothermal energy startup releases promising results of Texas pilot

hot off the press

As it seeks an additional $30 million in series A funding, Houston startup Sage Geosystems has released promising results from a test of its technology for underground storage of geothermal energy.

Sage says the pilot project, conducted at a Shell-drilled oil well in the Rio Grande Valley’s Starr County, showed the company’s long-term energy storage can compete on a cost basis with lithium-ion battery storage, hydropower storage, and natural gas-powered peaker plants. Peaker plants supply power during periods of peak energy demand.

Furthermore, Sage’s geothermal technology will provide more power capacity at half the cost of other advanced geothermal systems, the company says.

Sage’s storage system retrofits oil and gas wells with the company’s geothermal technology. But the company says its technology “can be deployed virtually anywhere.”

The system relies on mechanical storage instead of battery storage. In mechanical storage, heat, water, or air works in tandem with compressors, turbines, and other machinery. By contrast, battery storage depends on chemistry to get the job done.

“We have cracked the code to provide the perfect complement to renewable energy. … The opportunities for our energy storage to provide power are significant — from remote mining operations to data centers to solving energy poverty in remote locations,” former Shell executive Cindy Taff, CEO of Sage, says in a September 12 news release.

Sage says its storage capacity can be connected to existing power grids, or it can develop microgrids that harness stored energy.

An August 2023 article in The New York Times explained that Sage “is pursuing fracked wells that act as batteries. When there’s surplus electricity on the grid, water gets pumped into the well. In times of need, pressure and heat in the fractures pushes water back up, delivering energy.”

The pilot project, a joint venture between Sage and the Bureau of Economic Ecology at the University of Texas at Austin, was performed as part of a feasibility study financed by the Air Force. Now that the test results are in, Sage plans to build a prototype geothermal project at the Air Force’s Ellington Field Joint Reserve Base in Houston.

Sage says another feasibility study is underway in the Middle East in partnership with an unnamed oil and gas company.

Founded in 2020, Sage plans to raise another $30 million to accompany its previous series A funding.

The Virya climate fund and Houston-based drilling contractor Nabors Industries helped finance the pilot project in Starr County.

Last year, Sage announced it received an undisclosed amount of equity from Houston-based Ignis H2 Energy, a geothermal exploration and development company, and Dutch energy company Geolog International. Also last year, Sage said Nabors and Virya had teamed up for a $12 million investment in the startup.

Nabors executive Subodh Saxena challenged leaders to think more like Generation Z at OTC2023. Photo courtesy of nabors.com

Drilling executive calls for a new course of action to achieve success

EMPOWERING TRANSITION

Gone are the days of people, process, and technology. Welcome to purpose, partnering, and governance.

In the early morning hours of the third day of OTC2023, Subodh Saxena, senior vice president at Nabors Industries, succinctly summarized both the challenges and opportunities faced by an industry in the middle of an identity crisis.

The upstream energy industry focused the better part of the last two decades on physical safety, division and clarity of responsibilities, and technology adoption and adaptation. Rightfully so, given the Macondo incident of 2010, the Enron collapse in 2002, and the general wildfire growth of technology in the workplace over the same time frame.

But as leadership that came of age during these tragedies takes the reigns, a new set of challenges arises. Consistent lack of positive financial returns, a shrinking talent pool, and of course, the climate crisis, combine to form the perfect storm for an industry just trying to manage the rising and falling tides of unstable commodity pricing.

To avoid completely capsizing during this squall in which the industry finds itself, Saxena describes three opportunities for improvement.

  • Attracting new talent by creating psychological safety in our workplaces and improving the perception of technology adaptation in the industry
  • Embracing a collaborative approach to building new solutions to limit the amount of siloed rework that currently stymies rapid advancement
  • Improved financial discipline with greater honesty about ROI for the entire supply chain

“We have a mindset in the industry, that we have to build everything ourselves," Saxena laments. "We have to learn to partner because [if] every company invests in new technology to create transition, whether that's hydrogen or any other source of green energy, that return on invested capital is going to become negative. We need to learn to collaborate to ensure that we are all going to be successful.”

The requests made by Saxena represent a growing movement within the incumbent industry to think not of the energy transition as a shift from one energy source to another but as a transition in mindset. Collaboration is the name of the game now, as are mindfulness, responsibility, and above all else, sustainability.

Revisiting purpose, partnering, and governance to identify room for improvement will ultimately determine whether organizations will sink or sail.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

UH's $44 million mass timber building slashed energy use in first year

building up

The University of Houston recently completed assessments on year one of the first mass timber project on campus, and the results show it has had a major impact.

Known as the Retail, Auxiliary, and Dining Center, or RAD Center, the $44 million building showed an 84 percent reduction in predicted energy use intensity, a measure of how much energy a building uses relative to its size, compared to similar buildings. Its Global Warming Potential rating, a ratio determined by the Intergovernmental Panel on Climate Change, shows a 39 percent reduction compared to the benchmark for other buildings of its type.

In comparison to similar structures, the RAD Center saved the equivalent of taking 472 gasoline-powered cars driven for one year off the road, according to architecture firm Perkins & Will.

The RAD Center was created in alignment with the AIA 2030 Commitment to carbon-neutral buildings, designed by Perkins & Will and constructed by Houston-based general contractor Turner Construction.

Perkins & Will’s work reduced the building's carbon footprint by incorporating lighter mass timber structural systems, which allowed the RAD Center to reuse the foundation, columns and beams of the building it replaced. Reused elements account for 45 percent of the RAD Center’s total mass, according to Perkins & Will.

Mass timber is considered a sustainable alternative to steel and concrete construction. The RAD Center, a 41,000-square-foot development, replaced the once popular Satellite, which was a food, retail and hangout center for students on UH’s campus near the Science & Research Building 2 and the Jack J. Valenti School of Communication.

The RAD Center uses more than a million pounds of timber, which can store over 650 metric tons of CO2. Aesthetically, the building complements the surrounding campus woodlands and offers students a view both inside and out.

“Spaces are designed to create a sense of serenity and calm in an ecologically-minded environment,” Diego Rozo, a senior project manager and associate principal at Perkins & Will, said in a news release. “They were conceptually inspired by the notion of ‘unleashing the senses’ – the design celebrating different sights, sounds, smells and tastes alongside the tactile nature of the timber.”

In addition to its mass timber design, the building was also part of an Energy Use Intensity (EUI) reduction effort. It features high-performance insulation and barriers, natural light to illuminate a building's interior, efficient indoor lighting fixtures, and optimized equipment, including HVAC systems.

The RAD Center officially opened Phase I in Spring 2024. The third and final phase of construction is scheduled for this summer, with a planned opening set for the fall.

Experts on U.S. energy infrastructure, sustainability, and the future of data

Guest column

Digital infrastructure is the dominant theme in energy and infrastructure, real estate and technology markets.

Data, the byproduct and primary value generated by digital infrastructure, is referred to as “the fifth utility,” along with water, gas, electricity and telecommunications. Data is created, aggregated, stored, transmitted, shared, traded and sold. Data requires data centers. Data centers require energy. The United States is home to approximately 40% of the world's data centers. The U.S. is set to lead the world in digital infrastructure advancement and has an opportunity to lead on energy for a very long time.

Data centers consume vast amounts of electricity due to their computational and cooling requirements. According to the United States Department of Energy, data centers consume “10 to 50 times the energy per floor space of a typical commercial office building.” Lawrence Berkeley National Laboratory issued a report in December 2024 stating that U.S. data center energy use reached 176 TWh by 2023, “representing 4.4% of total U.S. electricity consumption.” This percentage will increase significantly with near-term investment into high performance computing (HPC) and artificial intelligence (AI). The markets recognize the need for digital infrastructure build-out and, developers, engineers, investors and asset owners are responding at an incredible clip.

However, the energy demands required to meet this digital load growth pose significant challenges to the U.S. power grid. Reliability and cost-efficiency have been, and will continue to be, two non-negotiable priorities of the legal, regulatory and quasi-regulatory regime overlaying the U.S. power grid.

Maintaining and improving reliability requires physical solutions. The grid must be perfectly balanced, with neither too little nor too much electricity at any given time. Specifically, new-build, physical power generation and transmission (a topic worthy of another article) projects must be built. To be sure, innovative financial products such as virtual power purchase agreements (VPPAs), hedges, environmental attributes, and other offtake strategies have been, and will continue to be, critical to growing the U.S. renewable energy markets and facilitating the energy transition, but the U.S. electrical grid needs to generate and move significantly more electrons to support the digital infrastructure transformation.

But there is now a third permanent priority: sustainability. New power generation over the next decade will include a mix of solar (large and small scale, offsite and onsite), wind and natural gas resources, with existing nuclear power, hydro, biomass, and geothermal remaining important in their respective regions.

Solar, in particular, will grow as a percentage of U.S grid generation. The Solar Energy Industries Association (SEIA) reported that solar added 50 gigawatts of new capacity to the U.S. grid in 2024, “the largest single year of new capacity added to the grid by an energy technology in over two decades.” Solar is leading, as it can be flexibly sized and sited.

Under-utilized technology such as carbon capture, utilization and storage (CCUS) will become more prominent. Hydrogen may be a potential game-changer in the medium-to-long-term. Further, a nuclear power renaissance (conventional and small modular reactor (SMR) technologies) appears to be real, with recent commitments from some of the largest companies in the world, led by technology companies. Nuclear is poised to be a part of a “net-zero” future in the United States, also in the medium-to-long term.

The transition from fossil fuels to zero carbon renewable energy is well on its way – this is undeniable – and will continue, regardless of U.S. political and market cycles. Along with reliability and cost efficiency, sustainability has become a permanent third leg of the U.S. power grid stool.

Sustainability is now non-negotiable. Corporate renewable and low carbon energy procurement is strong. State renewable portfolio standards (RPS) and clean energy standards (CES) have established aggressive goals. Domestic manufacturing of the equipment deployed in the U.S. is growing meaningfully and in politically diverse regions of the country. Solar, wind and batteries are increasing less expensive. But, perhaps more importantly, the grid needs as much renewable and low carbon power generation as possible - not in lieu of gas generation, but as an increasingly growing pairing with gas and other technologies. This is not an “R” or “D” issue (as we say in Washington), and it's not an “either, or” issue, it's good business and a physical necessity.

As a result, solar, wind and battery storage deployment, in particular, will continue to accelerate in the U.S. These clean technologies will inevitably become more efficient as the buildout in the U.S. increases, investments continue and technology advances.

At some point in the future (it won’t be in the 2020s, it could be in the 2030s, but, more realistically, in the 2040s), the U.S. will have achieved the remarkable – a truly modern (if not entirely overhauled) grid dependent largely on a mix of zero and low carbon power generation and storage technology. And when this happens, it will have been due in large part to the clean technology deployment and advances over the next 10 to 15 years resulting from the current digital infrastructure boom.

---

Hans Dyke and Gabbie Hindera are lawyers at Bracewell. Dyke's experience includes transactions in the electric power and oil and gas midstream space, as well as transactions involving energy intensive industries such as data storage. Hindera focuses on mergers and acquisitions, joint ventures, and public and private capital market offerings.

Rice researchers' quantum breakthrough could pave the way for next-gen superconductors

new findings

A new study from researchers at Rice University, published in Nature Communications, could lead to future advances in superconductors with the potential to transform energy use.

The study revealed that electrons in strange metals, which exhibit unusual resistance to electricity and behave strangely at low temperatures, become more entangled at a specific tipping point, shedding new light on these materials.

A team led by Rice’s Qimiao Si, the Harry C. and Olga K. Wiess Professor of Physics and Astronomy, used quantum Fisher information (QFI), a concept from quantum metrology, to measure how electron interactions evolve under extreme conditions. The research team also included Rice’s Yuan Fang, Yiming Wang, Mounica Mahankali and Lei Chen along with Haoyu Hu of the Donostia International Physics Center and Silke Paschen of the Vienna University of Technology. Their work showed that the quantum phenomenon of electron entanglement peaks at a quantum critical point, which is the transition between two states of matter.

“Our findings reveal that strange metals exhibit a unique entanglement pattern, which offers a new lens to understand their exotic behavior,” Si said in a news release. “By leveraging quantum information theory, we are uncovering deep quantum correlations that were previously inaccessible.”

The researchers examined a theoretical framework known as the Kondo lattice, which explains how magnetic moments interact with surrounding electrons. At a critical transition point, these interactions intensify to the extent that the quasiparticles—key to understanding electrical behavior—disappear. Using QFI, the team traced this loss of quasiparticles to the growing entanglement of electron spins, which peaks precisely at the quantum critical point.

In terms of future use, the materials share a close connection with high-temperature superconductors, which have the potential to transmit electricity without energy loss, according to the researchers. By unblocking their properties, researchers believe this could revolutionize power grids and make energy transmission more efficient.

The team also found that quantum information tools can be applied to other “exotic materials” and quantum technologies.

“By integrating quantum information science with condensed matter physics, we are pivoting in a new direction in materials research,” Si said in the release.