Collaboration key to preparing energy transition workforce, experts say

Experts say the strategic alliance among industry, education and government serves as the cornerstone for building a skilled, resilient and future-ready energy workforce in Houston. Image via houston.org

As energy companies and the Houston region look to prepare and develop the workforce necessary to support the energy transition, experts say collaboration among companies, educational institutions, the federal government and other organizations is fundamental.

Experts from across the Houston region discussed how organizations and companies are preparing the workforce of the future during a panel discussion at the Greater Houston Partnership’s UpSkill Works Forum on Aug. 3.

According to a BCG analysis, most Houston-based oil and gas workers will rely on just nine capability sets by 2050. “To ensure they have the right mix of competencies for the future, oil and gas companies will need to carry out a skills-based mapping exercise, starting with defining the expertise and capabilities needed to succeed in their chosen business areas, markets, and geographies,” a BCG publication on the energy transition states.

Maria Suarez-Simmons, senior director of energy policy for Energy Workforce & Technology Council, encourages companies to take a “holistic view” of the occupations they offer and adjust them to the needs of the future of energy. Saurez-Simmons added that energy companies should create messaging that communicates there are opportunities for all, not solely engineers.

Scott Marshall, senior group director for the people team in the Americas at Worley, said “We are in the transition today”, adding that companies should start reaching out to students at a much younger age to showcase available career paths if they are going to meet the demand. Worley offers several early career programs, including a global graduate development programs and STEM workshops for children.

Stacy Putman, manager of advocacy, leadership, workforce development and strategic projects at INEOS, shared how INEOS collaborates with schools, working with K – 12th-grade teachers to educate them on opportunities in sustainability, energy transition and manufacturing. Putnam also stressed the importance of being involved in an employee’s career journey.

In alignment with this strategic evolution, a growing number of companies are adopting skills-based hiring as a means to diversify their talent pool. This shift from the traditional reliance on four-year college degrees highlights the need for specialized skills aligned with the demands of the energy transition.

Raul Camba, managing director and Latin America lead at Accenture, helps energy companies navigate the energy transition but also focuses on the industry’s adaptability within its operations, strategies and workforce. Camba said another tool to close the skills gap is to identify adjacent skills or related and transferable skills a worker already has and build upon them. Camba said forums like this one where employers can openly share the tools and resources they’re utilizing will help companies find innovative solutions and colleges and universities design programs based on the region’s needs.

Experts say the strategic alliance among industry, education and government serves as the cornerstone for building a skilled, resilient and future-ready energy workforce in Houston.

------

This article originally ran on the Greater Houston Partnership's Houston Energy Transition Initiative blog. HETI exists to support Houston's future as an energy leader. For more information about the Houston Energy Transition Initiative, EnergyCapitalHTX's presenting sponsor, visit htxenergytransition.org.

Trending News

A View From HETI

Researchers from Rice University say their recent findings could revolutionize power grids, making energy transmission more efficient. Image via Getty Images.

A new study from researchers at Rice University, published in Nature Communications, could lead to future advances in superconductors with the potential to transform energy use.

The study revealed that electrons in strange metals, which exhibit unusual resistance to electricity and behave strangely at low temperatures, become more entangled at a specific tipping point, shedding new light on these materials.

A team led by Rice’s Qimiao Si, the Harry C. and Olga K. Wiess Professor of Physics and Astronomy, used quantum Fisher information (QFI), a concept from quantum metrology, to measure how electron interactions evolve under extreme conditions. The research team also included Rice’s Yuan Fang, Yiming Wang, Mounica Mahankali and Lei Chen along with Haoyu Hu of the Donostia International Physics Center and Silke Paschen of the Vienna University of Technology. Their work showed that the quantum phenomenon of electron entanglement peaks at a quantum critical point, which is the transition between two states of matter.

“Our findings reveal that strange metals exhibit a unique entanglement pattern, which offers a new lens to understand their exotic behavior,” Si said in a news release. “By leveraging quantum information theory, we are uncovering deep quantum correlations that were previously inaccessible.”

The researchers examined a theoretical framework known as the Kondo lattice, which explains how magnetic moments interact with surrounding electrons. At a critical transition point, these interactions intensify to the extent that the quasiparticles—key to understanding electrical behavior—disappear. Using QFI, the team traced this loss of quasiparticles to the growing entanglement of electron spins, which peaks precisely at the quantum critical point.

In terms of future use, the materials share a close connection with high-temperature superconductors, which have the potential to transmit electricity without energy loss, according to the researchers. By unblocking their properties, researchers believe this could revolutionize power grids and make energy transmission more efficient.

The team also found that quantum information tools can be applied to other “exotic materials” and quantum technologies.

“By integrating quantum information science with condensed matter physics, we are pivoting in a new direction in materials research,” Si said in the release.

Trending News