The facility in Baytown is expected to produce 28.3 million cubic meters of low-carbon hydrogen daily. Photo via exxonmobil.com

ExxonMobil selected Australia-based engineering and professional services company Worley to provide engineering, procurement and construction services for a proposed hydrogen and ammonia production facility in Baytown, which is expected to have a production capacity of 1 billion cubic feet of blue hydrogen per day. ExxonMobil expects the facility will be the largest of its kind in the world.

“We are delighted to continue our strategic, global relationship with ExxonMobil in its execution of upcoming projects, particularly in delivering this EPC project on the US Gulf Coast, which contributes significantly to strengthening Worley’s backlog,” Chris Ashton, CEO of Worley, states, according to Offshore Energy.

The facility in Baytown is expected to produce 28.3 million cubic meters (1 billion cubic feet) of low-carbon hydrogen daily and nearly 1 million metric tonnes (more than 1 million tons) of ammonia per year, which will also capture more than 98 percent of the associated CO2 emissions.

The facility will leverage advanced carbon capture and storage technologies to reduce emissions associated with hydrogen production. ExxonMobile also said its carbon capture and storage system would be available for use by third-party CO2 emitters in the area.

A final investment decision is expected in 2025 , and an anticipated startup in 2029. “Blue” hydrogen is expected to be a top energy driver in 2025 according to global consultancy Wood Mackenzie who predicts that at least three large-scale blue hydrogen projects in the U.S will reach FID by next year.

The company hopes the new facility will help in creating U.S. jobs and supporting community development initiatives throughout the Houston area, and the state.

ALLY Energy celebrated over 50 honorees at its annual awards event. Photo via LinkedIn

Top Houston energy teams, individuals, and companies honored at annual awards

meet the winnenrs

The brightest stars in Houston's energy community celebrated wins at an annual awards event this week.

ALLY Energy, a company that works with its clients to make the energy industry more equitable, hosted its seventh annual GRIT Awards and Best Energy Workplaces on October 26 — and named its prestigious winners. EnergyCapitalHTX, as well as its sister site InnovationMap, was a media partner for the event.

“Every year, we are astounded at how many impressive, committed people are demonstrating leadership and grit in their work to advance the energy transition and build more diverse, equitable and inclusive workplaces,” ALLY Energy CEO Katie Mehnert says in a news release naming the finalists. “This year is no exception. This is the time to celebrate so many crucial achievements that may otherwise go overlooked in the energy sector and in broader society.”

In addition to naming its winners, ALLY celebrated three Lifetime Achievement Award honorees who have distinguished careers championing change in energy and climate in the private or public sector in the areas of technology, policy, and workforce: John Berger, CEO of Sunnova Energy; Rhonda Morris, vice president and chief human resources officer of Chevron; and Amy Chronis, vice chair, US energy and chemicals leader, and Houston managing partner at Deloitte.

The big winners of 2023 are as follows.

The Professional Award

  • Alex Loureiro, Scientific Director at EnerGeo Alliance
  • Crystal McNack, Diversity, Equity, and Inclusion Advisor at Enbridge Inc.
  • Dani Milling, Gulf of Mexico Environmental Engineer & Mexico HSE Coordinator at Chevron
  • Katie Zimmerman, Decarbonization Director, Americas at Wood
  • Mark Klapatch-Mathias, Sustainability Coordinator at the University of Wisconsin-River Falls
  • Natalie Valentine, Director - Business Performance at Worley
  • Syed Fahim, Global ESG Lead at SLB
  • Tane Bates, Regional Operations Manager at Certarus LTD
  • Ujunwa Ojemeni, Senior Policy Advisor - Energy Transition & Technical Assistance Delivery at E3G - Third Generation Environmentalism

The Executive Award

  • Cara Hair, SVP of Corporate Services, Chief Legal and Compliance Officer at Helmerich & Payne
  • Emma Lewis, Senior Vice President USGC Chemicals & Products at Shell
  • Jeremy Campbell-Wray, Strategic Accounts and Enterprise Growth Market Executive at Baker Hughes
  • Maggie Seeliger, SVP & Global Head of Strategy, Energy & Resources at Sodexo
  • Max Chan, Senior Vice President, Corporate Development Officer at Enbridge
  • Megan Beauregard, Chief Legal Officer, Secretary, and Head of Policy and Regulatory Affairs at Enel North America, Inc.
  • Sarah Delille, Vice President of US Country Management at Equinor
  • Whitney Eaton, EVP, People & Sustainability at TGS Energy

The JEDI Award

  • Jason Limerick, Sustainability Strategy Lead at Woodside Energy
  • Melina Acevedo, Associate & Partnerships Lead at DE Shaw Renewable Investments

The Entrepreneur Award

  • Charli Matthews, CEO at Empowering Women in Industry
  • Mike Francis, Co-Founder and CEO at NanoTech

The ESG & Climate Champion Award

  • Andrea Hepp, Deal Lead at Shell
  • Brittney Marshall, Senior Advisor, Climate Strategy and Policy at Woodside Energy
  • Gabriel Rolland, Vice President, Corporate QHSE at TGS Energy
  • Sandhya Ganapathy, Chief Executive Officer at EDP Renewables North America

Gritty Girl Award

  • Deepasha Baral, Student at the University of Petroleum and Energy Studies

Best Affinity Group, Employee Resource Group Award, sponsored by ChampionX

  • Baker Hughes
  • ChampionX
  • Shell
  • TPI Composites
  • Women's Energy Network Houston
  • Wood Mackenzie
  • Worley

Best Energy Team Award, sponsored by Ovintiv

  • Advisian Material Handling
  • Halliburton Labs
  • NOV Marketing
  • Syzygy Plasmonics, Rigel Manufacturing & Launch Team

Best Energy Workplaces Award

  • Aera Energy LLC
  • Baker Hughes
  • ChampionX
  • EDP Renewables North America
  • Enel
  • Global Edge Group
  • Shell
  • Southwestern Energy
  • Sunnova Energy International
  • TGS Energy
  • Wood
  • Woodside Energy
Amazon has agreed to buy 250,000 metric tons of carbon removal credits from 1PointFive’s first DAC plant. Photo via 1pointfive.com

Oxy's cleantech arm scores Amazon DAC investment

carbon capture client

Houston-based cleantech company 1PointFive is among the recipients of e-commerce giant Amazon’s first investments in carbon-fighting direct air capture (DAC).

Amazon has agreed to buy 250,000 metric tons of carbon removal credits from Stratos, 1PointFive’s first DAC plant, over a 10-year span. That commitment is equivalent to the amount of carbon stored naturally across more than 290,000 acres of U.S. forecasts, says Amazon.

Financial terms of the deal weren’t disclosed.

1PointFive is a carbon capture, utilization, and sequestration (CCUS) subsidiary of Houston-based energy company Occidental Petroleum.

The carbon captured for Amazon will be stored deep underground in saline aquifers — large geological rock formations that are saturated in saltwater.

As Amazon explains, DAC technology filters CO2 from the atmosphere and stores it in underground geological formations. Aside from being stored, removed carbon can be used to make building materials like bricks, cement, and concrete.

1PointFive is constructing its first DAC plant in Ector County, which is anchored by Odessa. The facility is expected to be the world’s largest DAC plant, capturing up to 500,000 tons of CO2 per year. Amazon Web Services (AWS) will provide real-time performance data for the plant.

“Amazon’s purchase and long-term contract represent a significant commitment to direct air capture as a vital carbon removal solution,” Michael Avery, president and general manager of 1PointFive, says in a news release. “We are excited to collaborate with Amazon to help them achieve their sustainability goals.”

1PointFive broke ground on the Stratos plant in April. Its project partners include British Columbia-based Carbon Engineering and Australia-based Worley. The plant is expected to be fully operational by mid-2025.

1PointFive envisions establishing more than 100 DAC facilities around the world by 2035.

The Amazon deal isn’t the only major deal for 1Point5 this summer.

In August, the U.S. Department of Energy (DOE) announced a $600 million grant for a 1PointFive-operated DAC hub that will be built in South Texas. The more than 100,000-acre hub, comprising 30 individual DAC projects, eventually may remove and store up to 30 million metric tons of CO2 per year.

Also in August, Japan’s All Nippon Airways (ANA) said it reached an agreement with 1PointFive to buy 10,000 metric tons of carbon removal credits per year over a three-year period starting in 2025. The credits will be generated by 1PointFive’s Stratos plant.

In the U.S., DAC has gotten a huge boost from the federal government. The Inflation Reduction Act, passed in 2022, includes tax credits for capturing and storing carbon via DAC.

The International Energy Agency says 27 DAC plants have been commissioned around the world, with at least 130 more in the development stage. One forecast predicts the value of the global market for DAC systems will climb past $2.3 billion by 2030.

Experts say the strategic alliance among industry, education and government serves as the cornerstone for building a skilled, resilient and future-ready energy workforce in Houston. Image via houston.org

Collaboration key to preparing energy transition workforce, experts say

As energy companies and the Houston region look to prepare and develop the workforce necessary to support the energy transition, experts say collaboration among companies, educational institutions, the federal government and other organizations is fundamental.

Experts from across the Houston region discussed how organizations and companies are preparing the workforce of the future during a panel discussion at the Greater Houston Partnership’s UpSkill Works Forum on Aug. 3.

According to a BCG analysis, most Houston-based oil and gas workers will rely on just nine capability sets by 2050. “To ensure they have the right mix of competencies for the future, oil and gas companies will need to carry out a skills-based mapping exercise, starting with defining the expertise and capabilities needed to succeed in their chosen business areas, markets, and geographies,” a BCG publication on the energy transition states.

Maria Suarez-Simmons, senior director of energy policy for Energy Workforce & Technology Council, encourages companies to take a “holistic view” of the occupations they offer and adjust them to the needs of the future of energy. Saurez-Simmons added that energy companies should create messaging that communicates there are opportunities for all, not solely engineers.

Scott Marshall, senior group director for the people team in the Americas at Worley, said “We are in the transition today”, adding that companies should start reaching out to students at a much younger age to showcase available career paths if they are going to meet the demand. Worley offers several early career programs, including a global graduate development programs and STEM workshops for children.

Stacy Putman, manager of advocacy, leadership, workforce development and strategic projects at INEOS, shared how INEOS collaborates with schools, working with K – 12th-grade teachers to educate them on opportunities in sustainability, energy transition and manufacturing. Putnam also stressed the importance of being involved in an employee’s career journey.

In alignment with this strategic evolution, a growing number of companies are adopting skills-based hiring as a means to diversify their talent pool. This shift from the traditional reliance on four-year college degrees highlights the need for specialized skills aligned with the demands of the energy transition.

Raul Camba, managing director and Latin America lead at Accenture, helps energy companies navigate the energy transition but also focuses on the industry’s adaptability within its operations, strategies and workforce. Camba said another tool to close the skills gap is to identify adjacent skills or related and transferable skills a worker already has and build upon them. Camba said forums like this one where employers can openly share the tools and resources they’re utilizing will help companies find innovative solutions and colleges and universities design programs based on the region’s needs.

Experts say the strategic alliance among industry, education and government serves as the cornerstone for building a skilled, resilient and future-ready energy workforce in Houston.

------

This article originally ran on the Greater Houston Partnership's Houston Energy Transition Initiative blog. HETI exists to support Houston's future as an energy leader. For more information about the Houston Energy Transition Initiative, EnergyCapitalHTX's presenting sponsor, visit htxenergytransition.org.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston researchers make headway on developing low-cost sodium-ion batteries

energy storage

A new study by researchers from Rice University’s Department of Materials Science and NanoEngineering, Baylor University and the Indian Institute of Science Education and Research Thiruvananthapuram has introduced a solution that could help develop more affordable and sustainable sodium-ion batteries.

The findings were recently published in the journal Advanced Functional Materials.

The team worked with tiny cone- and disc-shaped carbon materials from oil and gas industry byproducts with a pure graphitic structure. The forms allow for more efficient energy storage with larger sodium and potassium ions, which is a challenge for anodes in battery research. Sodium and potassium are more widely available and cheaper than lithium.

“For years, we’ve known that sodium and potassium are attractive alternatives to lithium,” Pulickel Ajayan, the Benjamin M. and Mary Greenwood Anderson Professor of Engineering at Rice, said in a news release. “But the challenge has always been finding carbon-based anode materials that can store these larger ions efficiently.”

Lithium-ion batteries traditionally rely on graphite as an anode material. However, traditional graphite structures cannot efficiently store sodium or potassium energy, since the atoms are too big and interactions become too complex to slide in and out of graphite’s layers. The cone and disc structures “offer curvature and spacing that welcome sodium and potassium ions without the need for chemical doping (the process of intentionally adding small amounts of specific atoms or molecules to change its properties) or other artificial modifications,” according to the study.

“This is one of the first clear demonstrations of sodium-ion intercalation in pure graphitic materials with such stability,” Atin Pramanik, first author of the study and a postdoctoral associate in Ajayan’s lab, said in the release. “It challenges the belief that pure graphite can’t work with sodium.”

In lab tests, the carbon cones and discs stored about 230 milliamp-hours of charge per gram (mAh/g) by using sodium ions. They still held 151 mAh/g even after 2,000 fast charging cycles. They also worked with potassium-ion batteries.

“We believe this discovery opens up a new design space for battery anodes,” Ajayan added in the release. “Instead of changing the chemistry, we’re changing the shape, and that’s proving to be just as interesting.”

ExxonMobil lands major partnership for clean hydrogen facility in Baytown

power deal

Exxon Mobil and Japanese import/export company Marubeni Corp. have signed a long-term offtake agreement for 250,000 tonnes of low-carbon ammonia per year from ExxonMobil’s forthcoming facility in Baytown, Texas.

“This is another positive step forward for our landmark project,” Barry Engle, president of ExxonMobil Low Carbon Solutions, said in a news release. “By using American-produced natural gas we can boost global energy supply, support Japan’s decarbonization goals and create jobs at home. Our strong relationship with Marubeni sets the stage for delivering low-carbon ammonia from the U.S. to Japan for years to come."

The companies plan to produce low-carbon hydrogen with approximately 98% of CO2 removed and low-carbon ammonia. Marubeni will supply the ammonia mainly to Kobe Power Plant, a subsidiary of Kobe Steel, and has also agreed to acquire an equity stake in ExxonMobil’s low-carbon hydrogen and ammonia facility, which is expected to be one of the largest of its kind.

The Baytown facility aims to produce up to 1 billion cubic feet daily of “virtually carbon-free” hydrogen. It can also produce more than 1 million tons of low-carbon ammonia per year. A final investment decision is expected in 2025 that will be contingent on government policy and necessary regulatory permits, according to the release.

The Kobe Power Plant aims to co-fire low-carbon ammonia with existing fuel, and reduce CO2 emissions by Japan’s fiscal year of 2030. Marubeni also aims to assist the decarbonization of Japan’s power sector and steel manufacturing industry, chemical industry, transportation industry and various others sectors.

“Marubeni will take this first step together with ExxonMobil in the aim of establishing a global low-carbon ammonia supply chain for Japan through the supply of low-carbon ammonia to the Kobe Power Plant,” Yoshiaki Yokota, senior managing executive officer at Marubeni Corp., added in the news release. “Additionally, we aim to collaborate beyond this supply chain and strive towards the launch of a global market for low-carbon ammonia. We hope to continue to actively cooperate with ExxonMobil, with a view of utilizing this experience and relationship we have built to strategically decarbonize our power projects in Japan and Southeast Asia in the near future.”

Houston expert: The role of U.S. LNG in global energy markets

guest column

The debate over U.S. Liquefied Natural Gas (LNG) exports is too often framed in misleading, oversimplified terms. The reality is clear: LNG is not just a temporary fix or a bridge fuel, it is a fundamental pillar of global energy security and economic stability. U.S. LNG is already reducing coal use in Asia, strengthening Europe’s energy balance, and driving economic growth at home. Turning away from LNG exports now would be a shortsighted mistake, undermining both U.S. economic interests and global energy security.

Ken Medlock, Senior Director of the Baker Institute’s Center for Energy Studies, provides a fact-based assessment of the U.S. LNG exports that cuts through the noise. His analysis, consistent with McKinsey work, confirms that U.S. LNG is essential to balancing global energy markets for the decades ahead. While infrastructure challenges and environmental concerns exist, the benefits far outweigh the drawbacks. If the U.S. fails to embrace its leadership in LNG, we risk giving up our position to competitors, weakening our energy resilience, and damaging national security.

LNG Export Licenses: Options, Not Guarantees

A common but deeply flawed argument against expanding LNG exports is the assumption that granting licenses guarantees unlimited exports. This is simply incorrect. As Medlock puts it, “Licenses are options, not guarantees. Projects do not move forward if they are unable to find commercial footing.”

This is critical: government approvals do not dictate market outcomes. LNG projects must navigate economic viability, infrastructure feasibility, and global demand before becoming operational. This reality should dispel fears that expanded licensing will automatically lead to an uncontrolled surge in exports or domestic price spikes. The market, not government restrictions, should determine which projects succeed.

Canada’s Role in U.S. Gas Markets

The U.S. LNG debate often overlooks an important factor: pipeline imports from Canada. The U.S. and Canadian markets are deeply intertwined, yet critics often ignore this reality. Medlock highlights that “the importance to domestic supply-demand balance of our neighbors to the north and south cannot be overstated.”

Infrastructure Constraints and Price Volatility

One of the most counterproductive policies the U.S. could adopt is restricting LNG infrastructure development. Ironically, such restrictions would not only hinder exports but also drive up domestic energy prices. Medlock’s report explains this paradox: “Constraints that either raise development costs or limit the ability to develop infrastructure tend to make domestic supply less elastic. Ironically, this has the impact of limiting exports and raising domestic prices.”

The takeaway is straightforward: blocking infrastructure development is a self-inflicted wound. It stifles market efficiency, raises costs for American consumers, and weakens U.S. competitiveness in global energy markets. McKinsey research confirms that well-planned infrastructure investments lead to greater price stability and a more resilient energy sector. The U.S. should be accelerating, not hindering, these investments.

Short-Run vs. Long-Run Impacts on Domestic Prices

Critics of LNG exports often confuse short-term price fluctuations with long-term market trends. This is a mistake. Medlock underscores that “analysis that claims overly negative domestic price impacts due to exports tend to miss the distinction between short-run and long-run elasticity.”

Short-term price shifts are inevitable, driven by seasonal demand and supply disruptions. But long-term trends tell a different story: as infrastructure improves and production expands, markets adjust, and price impacts moderate. McKinsey analysis suggests supply elasticity increases as producers respond to price signals. Policy decisions should be grounded in this broader economic reality, not reactionary fears about temporary price movements.

Assessing the Emissions Debate

The argument that restricting U.S. LNG exports will lower global emissions is fundamentally flawed. In fact, the opposite is true. Medlock warns against “engineering scenarios that violate basic economic principles to induce particular impacts.” He emphasizes that evaluating emissions must be done holistically. “Constraining U.S. LNG exports will likely mean Asian countries will continue to turn to coal for power system balance,” a move that would significantly increase global emissions.

McKinsey’s research reinforces that, on a lifecycle basis, U.S. LNG produces fewer emissions than coal. That said, there is room for improvement, and efforts should focus on minimizing methane leakage and optimizing gas production efficiency.

However, the broader point remains: restricting LNG on environmental grounds ignores the global energy trade-offs at play. A rational approach would address emissions concerns while still recognizing the role of LNG in the global energy system.

The DOE’s Commonwealth LNG Authorization

The Department of Energy’s recent conditional approval of the Commonwealth LNG project is a step in the right direction. It signals that economic growth, energy security, and market demand remain key considerations in regulatory decisions. Medlock’s analysis makes it clear that LNG exports will be driven by market forces, and McKinsey’s projections show that global demand for flexible, reliable LNG is only increasing.

The U.S. should not limit itself with restrictive policies when the rest of the world is demanding more LNG. This is an opportunity to strengthen our position as a global energy leader, create jobs, and ensure long-term energy security.

Conclusion

The U.S. LNG debate must move beyond fear-driven narratives and focus on reality. The facts are clear: LNG exports strengthen energy security, drive economic growth, and reduce global emissions by displacing coal.

Instead of restrictive policies that limit LNG’s potential, the U.S. should focus on expanding infrastructure, maintaining market flexibility, and supporting innovation to further reduce emissions. The energy transition will be shaped by market realities, not unrealistic expectations.

The U.S. has an opportunity to lead. But leadership requires embracing economic logic, investing in infrastructure, and ensuring our policies are guided by facts, not political expediency. LNG is a critical part of the global energy landscape, and it’s time to recognize its long-term strategic value.

------------

Scott Nyquist is a senior advisor at McKinsey & Company and vice chairman, Houston Energy Transition Initiative of the Greater Houston Partnership. The views expressed herein are Nyquist's own and not those of McKinsey & Company or of the Greater Houston Partnership. This article originally appeared on LinkedIn.