carbon capture client

Oxy's cleantech arm scores Amazon DAC investment

Amazon has agreed to buy 250,000 metric tons of carbon removal credits from 1PointFive’s first DAC plant. Photo via 1pointfive.com

Houston-based cleantech company 1PointFive is among the recipients of e-commerce giant Amazon’s first investments in carbon-fighting direct air capture (DAC).

Amazon has agreed to buy 250,000 metric tons of carbon removal credits from Stratos, 1PointFive’s first DAC plant, over a 10-year span. That commitment is equivalent to the amount of carbon stored naturally across more than 290,000 acres of U.S. forecasts, says Amazon.

Financial terms of the deal weren’t disclosed.

1PointFive is a carbon capture, utilization, and sequestration (CCUS) subsidiary of Houston-based energy company Occidental Petroleum.

The carbon captured for Amazon will be stored deep underground in saline aquifers — large geological rock formations that are saturated in saltwater.

As Amazon explains, DAC technology filters CO2 from the atmosphere and stores it in underground geological formations. Aside from being stored, removed carbon can be used to make building materials like bricks, cement, and concrete.

1PointFive is constructing its first DAC plant in Ector County, which is anchored by Odessa. The facility is expected to be the world’s largest DAC plant, capturing up to 500,000 tons of CO2 per year. Amazon Web Services (AWS) will provide real-time performance data for the plant.

“Amazon’s purchase and long-term contract represent a significant commitment to direct air capture as a vital carbon removal solution,” Michael Avery, president and general manager of 1PointFive, says in a news release. “We are excited to collaborate with Amazon to help them achieve their sustainability goals.”

1PointFive broke ground on the Stratos plant in April. Its project partners include British Columbia-based Carbon Engineering and Australia-based Worley. The plant is expected to be fully operational by mid-2025.

1PointFive envisions establishing more than 100 DAC facilities around the world by 2035.

The Amazon deal isn’t the only major deal for 1Point5 this summer.

In August, the U.S. Department of Energy (DOE) announced a $600 million grant for a 1PointFive-operated DAC hub that will be built in South Texas. The more than 100,000-acre hub, comprising 30 individual DAC projects, eventually may remove and store up to 30 million metric tons of CO2 per year.

Also in August, Japan’s All Nippon Airways (ANA) said it reached an agreement with 1PointFive to buy 10,000 metric tons of carbon removal credits per year over a three-year period starting in 2025. The credits will be generated by 1PointFive’s Stratos plant.

In the U.S., DAC has gotten a huge boost from the federal government. The Inflation Reduction Act, passed in 2022, includes tax credits for capturing and storing carbon via DAC.

The International Energy Agency says 27 DAC plants have been commissioned around the world, with at least 130 more in the development stage. One forecast predicts the value of the global market for DAC systems will climb past $2.3 billion by 2030.

Trending News

A View From HETI

Rice University scientists' “recharge-to-recycle” reactor has major implications for the electric vehicle sector. Photo courtesy Jorge Vidal/Rice University.

Engineers at Rice University have developed a cleaner, innovative process to turn end-of-life lithium-ion battery waste into new lithium feedstock.

The findings, recently published in the journal Joule, demonstrate how the team’s new “recharge-to-recycle” reactor recharges the battery’s waste cathode materials to coax out lithium ions into water. The team was then able to form high-purity lithium hydroxide, which was clean enough to feed directly back into battery manufacturing.

The study has major implications for the electric vehicle sector, which significantly contributes to the waste stream from end-of-life battery packs. Additionally, lithium tends to be expensive to mine and refine, and current recycling methods are energy- and chemical-intensive.

“Directly producing high-purity lithium hydroxide shortens the path back into new batteries,” Haotian Wang, associate professor of chemical and biomolecular engineering, co-corresponding author of the study and co-founder of Solidec, said in a news release. “That means fewer processing steps, lower waste and a more resilient supply chain.”

Sibani Lisa Biswal, chair of Rice’s Department of Chemical and Biomolecular Engineering and the William M. McCardell Professor in Chemical Engineering, also served as co-corresponding author on the study.

“We asked a basic question: If charging a battery pulls lithium out of a cathode, why not use that same reaction to recycle?” Biswal added in the release. “By pairing that chemistry with a compact electrochemical reactor, we can separate lithium cleanly and produce the exact salt manufacturers want.”

The new process also showed scalability, according to Rice. The engineers scaled the device to 20 square centimeters, then ran a 1,000-hour stability test and processed 57 grams of industrial black mass supplied by industry partner Houston-based TotalEnergies. The results produced lithium hydroxide that was more than 99 percent pure. It also maintained an average lithium recovery rate of nearly 90 percent over the 1,000-hour test, showing its durability. The process also worked across multiple battery chemistries, including lithium iron phosphate, lithium manganese oxide and nickel-manganese-cobalt variants.

Looking ahead, the team plans to scale the process and consider ways it can sustain high efficiency for greater lithium hydroxide concentrations.

“We’ve made lithium extraction cleaner and simpler,” Biswal added in the release. “Now we see the next bottleneck clearly. Tackle concentration, and you unlock even better sustainability.

Trending News