Oxy's cleantech arm scores Amazon DAC investment

carbon capture client

Amazon has agreed to buy 250,000 metric tons of carbon removal credits from 1PointFive’s first DAC plant. Photo via 1pointfive.com

Houston-based cleantech company 1PointFive is among the recipients of e-commerce giant Amazon’s first investments in carbon-fighting direct air capture (DAC).

Amazon has agreed to buy 250,000 metric tons of carbon removal credits from Stratos, 1PointFive’s first DAC plant, over a 10-year span. That commitment is equivalent to the amount of carbon stored naturally across more than 290,000 acres of U.S. forecasts, says Amazon.

Financial terms of the deal weren’t disclosed.

1PointFive is a carbon capture, utilization, and sequestration (CCUS) subsidiary of Houston-based energy company Occidental Petroleum.

The carbon captured for Amazon will be stored deep underground in saline aquifers — large geological rock formations that are saturated in saltwater.

As Amazon explains, DAC technology filters CO2 from the atmosphere and stores it in underground geological formations. Aside from being stored, removed carbon can be used to make building materials like bricks, cement, and concrete.

1PointFive is constructing its first DAC plant in Ector County, which is anchored by Odessa. The facility is expected to be the world’s largest DAC plant, capturing up to 500,000 tons of CO2 per year. Amazon Web Services (AWS) will provide real-time performance data for the plant.

“Amazon’s purchase and long-term contract represent a significant commitment to direct air capture as a vital carbon removal solution,” Michael Avery, president and general manager of 1PointFive, says in a news release. “We are excited to collaborate with Amazon to help them achieve their sustainability goals.”

1PointFive broke ground on the Stratos plant in April. Its project partners include British Columbia-based Carbon Engineering and Australia-based Worley. The plant is expected to be fully operational by mid-2025.

1PointFive envisions establishing more than 100 DAC facilities around the world by 2035.

The Amazon deal isn’t the only major deal for 1Point5 this summer.

In August, the U.S. Department of Energy (DOE) announced a $600 million grant for a 1PointFive-operated DAC hub that will be built in South Texas. The more than 100,000-acre hub, comprising 30 individual DAC projects, eventually may remove and store up to 30 million metric tons of CO2 per year.

Also in August, Japan’s All Nippon Airways (ANA) said it reached an agreement with 1PointFive to buy 10,000 metric tons of carbon removal credits per year over a three-year period starting in 2025. The credits will be generated by 1PointFive’s Stratos plant.

In the U.S., DAC has gotten a huge boost from the federal government. The Inflation Reduction Act, passed in 2022, includes tax credits for capturing and storing carbon via DAC.

The International Energy Agency says 27 DAC plants have been commissioned around the world, with at least 130 more in the development stage. One forecast predicts the value of the global market for DAC systems will climb past $2.3 billion by 2030.

Occidental says its all-cash acquisition of Canada-based Carbon Engineering is set to close by the end of 2023. Photo via carbonengineering.com

Oxy acquires carbon capture co. in $1.1B deal

betting on dac

In yet another bet on direct carbon capture (DAC), Houston-based Occidental has agreed to purchase a DAC technology company for $1.1 billion.

Occidental says its all-cash acquisition of Canada-based Carbon Engineering is set to close by the end of 2023. Carbon Engineering was founded in 2009.

Under the deal, Carbon Engineering would become a wholly owned subsidiary of Oxy Low Carbon Ventures, the investment arm of Occidental. Carbon Engineering employees will work with teams at Occidental and its low-carbon subsidiary, 1PointFive, on DAC technology. The company’s R&D and innovation units will remain in Squamish, British Columbia.

Occidental has been a key DAC partner of Carbon Engineering since 2019.

“We look forward to continuing our collaboration with the Carbon Engineering team, which has been a leader in pioneering and advancing DAC technology,” Vicki Hollub, president and CEO of Occidental, says in an August 15 news release. “Together, Occidental and Carbon Engineering can accelerate plans to globally deploy DAC technology at a climate-relevant scale and make DAC the preferred solution for businesses seeking to remove their hard-to-abate emissions.”

Billionaire Warren Buffett’s Berkshire Hathaway conglomerate owns about one-fourth of the shares of publicly traded Occidental.

In conjunction with Carbon Engineering, Occidental’s 1PointFive is building Stratos, the world’s largest DAC plant. The Ector County facility, scheduled to begin operating in mid-2025, is projected to extract up to 500,000 metric tons of carbon dioxide from the air each year. It’s anticipated that Stratos will employ more than 1,000 people during construction and up to 75 people once the plant is up and running.

Occidental and Carbon Engineering are adapting Stratos’ engineering and design features for a DAC plant to be built on a site at South Texas’ King Ranch. The South Texas DAC Hub, which is on track to create about 2,500 jobs, recently received a roughly $600 million grant from the U.S. Department of Energy (DOE).

1PointFive plans to open as many as 135 DAC facilities around the world by 2035, with the capacity to capture 100 million metric tons of carbon dioxide (CO2) per year.

DAC technology pulls carbon dioxide emissions from the atmosphere at any location and permanently stores the CO2 or uses it for other purposes. By contrast, carbon capture sucks carbon dioxide from the air near where emissions are generated and then permanently stores the CO2 or uses it for other purposes.

A DAC system vacuums about 50 percent to 60 percent of the carbon dioxide from the air that passes through the system’s fans.

DAC “is shaping up to be a key component of meeting net-zero emissions goals in the United States,” according to the National Renewable Energy Laboratory.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

NRG makes latest partnership to grow virtual power plant

VPP partners

Houston-based NRG Energy recently announced a new long-term partnership with San Francisco-based Sunrun that aims to meet Texas’ surging energy demands and accelerate the adoption of home battery storage in Texas. The partnership also aligns with NRG’s goal of developing a 1-gigawatt virtual power plant by connecting thousands of decentralized energy sources by 2035.

Through the partnership, the companies will offer Texas residents home energy solutions that pair Sunrun’s solar-plus-storage systems with optimized rate plans and smart battery programming through Reliant, NRG’s retail electricity provider. As new customers enroll, their stored energy can be aggregated and dispatched to the ERCOT grid, according to a news release.

Additionally, Sunrun and NRG will work to create customer plans that aggregate and dispatch distributed power and provide electricity to Texas’ grid during peak periods.

“Texas is growing fast, and our electricity supply must keep pace,” Brad Bentley, executive vice president and president of NRG Consumer, said in the release. “By teaming up with Sunrun, we’re unlocking a new source of dispatchable, flexible energy while giving customers the opportunity to unlock value from their homes and contribute to a more resilient grid

Participating Reliant customers will be paid for sharing their stored solar energy through the partnership. Sunrun will be compensated for aggregating the stored capacity.

“This partnership demonstrates the scale and strength of Sunrun’s storage and solar distributed power plant assets,” Sunrun CEO Mary Powell added in the release. “We are delivering critical energy infrastructure that gives Texas families affordable, resilient power and builds a reliable, flexible power plant for the grid.”

In December, Reliant also teamed up with San Francisco tech company GoodLeap to bolster residential battery participation and accelerate the growth of NRG’s virtual power plant network in Texas.

In 2024, NRG partnered with California-based Renew Home to distribute hundreds of thousands of VPP-enabled smart thermostats by 2035 to help households manage and lower their energy costs. At the time, the company reported that its 1-gigawatt VPP would be able to provide energy to 200,000 homes during peak demand.

10+ exciting energy breakthroughs made by Houston teams in 2025

Year In Review

Editor's note: As 2025 comes to a close, we're revisiting the biggest headlines and major milestones of the energy sector this year. Here are the most exciting scientific breakthroughs made by Houstonians this year that are poised to shape the future of energy:

Rice University team develops eco-friendly method to destroy 'forever chemicals' in water

Rice University researchers have developed a new method for removing PFAS from water that works 100 times faster than traditional filters. Photo via Rice University.

Rice University researchers have teamed up with South Korean scientists to develop the first eco-friendly technology that captures and destroys toxic “forever chemicals,” or PFAS, in water. The Rice-led study centered on a layered double hydroxide (LDH) material made from copper and aluminum that could rapidly capture PFAS and be used to destroy the chemicals.

UH researchers make breakthrough in cutting carbon capture costs

UH carbon capture cost cutting

A team from UH has published two breakthrough studies that could help cut costs and boost efficiency in carbon capture. Photo courtesy UH.

A team of researchers at the University of Houston has made two breakthroughs in addressing climate change and potentially reducing the cost of capturing harmful emissions from power plants. Led by Professor Mim Rahimi at UH’s Cullen College of Engineering, the team first introduced a membraneless electrochemical process that cuts energy requirements and costs for amine-based carbon dioxide capture during the acid gas sweetening process.The second breakthrough displayed a reversible flow battery architecture that absorbs CO2 during charging and releases it upon discharge.

Houston team’s discovery brings solid-state batteries closer to EV use

Houston researchers have uncovered why solid-state batteries break down and what could be done to slow the process. Photo via Getty Images.

A team of researchers from the University of Houston, Rice University and Brown University has uncovered new findings that could extend battery life and potentially change the electric vehicle landscape. Their work deployed a powerful, high-resolution imaging technique known as operando scanning electron microscopy to better understand why solid-state batteries break down and what could be done to slow the process.

Houston researchers make breakthrough on electricity-generating bacteria

A team of Rice researchers, including Caroline Ajo-Franklin and Biki Bapi Kundu, has uncovered how certain bacteria breathe by generating electricity. Photo by Jeff Fitlow/Rice University.

Research from Rice University that merges biology with electrochemistry has uncovered new findings on how some bacteria generate electricity. Research showed how some bacteria use compounds called naphthoquinones, rather than oxygen, to transfer electrons to external surfaces in a process known as extracellular respiration. In other words, the bacteria are exhale electricity as they breathe. This process has been observed by scientists for years, but the Rice team's deeper understanding of its mechanism is a major breakthrough, with implications for the clean energy and industrial biotechnology sectors, according to the university.

Rice researchers' quantum breakthrough could pave the way for next-gen superconductors

Researchers from Rice University say their recent findings could revolutionize power grids, making energy transmission more efficient. Image via Getty Images.

A study from researchers at Rice University could lead to future advances in superconductors with the potential to transform energy use. The study revealed that electrons in strange metals, which exhibit unusual resistance to electricity and behave strangely at low temperatures, become more entangled at a specific tipping point, shedding new light on these materials. The materials share a close connection with high-temperature superconductors, which have the potential to transmit electricity without energy loss, according to the researchers. By unblocking their properties, researchers believe this could revolutionize power grids and make energy transmission more efficient.

UH researchers develop breakthrough material to boost efficiency of sodium-ion batteries

A team at the University of Houston is changing the game for sodium-ion batteries. Photo via Getty Images

A research lab at the University of Houston developed a new type of material for sodium-ion batteries that could make them more efficient and boost their energy performance. The Canepa Research Laboratory is working on a new material called sodium vanadium phosphate, which improves sodium-ion battery performance by increasing the energy density. This material brings sodium technology closer to competing with lithium-ion batteries, according to the researchers.

Houston researchers make headway on developing low-cost sodium-ion batteries

Houston researchers make headway on developing low-cost sodium-ion batteries

Rice's Atin Pramanik and a team in Pulickel Ajayan's lab shared new findings that offer a sustainable alternative to lithium batteries by enhancing sodium and potassium ion storage. Photo by Jeff Fitlow/Courtesy Rice University

A new study by researchers from Rice University’s Department of Materials Science and NanoEngineering, Baylor University and the Indian Institute of Science Education and Research Thiruvananthapuram has introduced a solution that could help develop more affordable and sustainable sodium-ion batteries. The team worked with tiny cone- and disc-shaped carbon materials from oil and gas industry byproducts with a pure graphitic structure. The forms allow for more efficient energy storage with larger sodium and potassium ions, which is a challenge for anodes in battery research. Sodium and potassium are more widely available and cheaper than lithium.

Houston scientists develop 'recharge-to-recycle' reactor for lithium-ion batteries

Rice University scientists' “recharge-to-recycle” reactor has major implications for the electric vehicle sector. Photo courtesy Jorge Vidal/Rice University.

Engineers at Rice University have developed a cleaner, innovative process to turn end-of-life lithium-ion battery waste into new lithium feedstock. The findings demonstrate how the team’s new “recharge-to-recycle” reactor recharges the battery’s waste cathode materials to coax out lithium ions into water. The team was then able to form high-purity lithium hydroxide, which was clean enough to feed directly back into battery manufacturing. The study has major implications for the electric vehicle sector, which significantly contributes to the waste stream from end-of-life battery packs.

Houston researchers develop strong biomaterial that could replace plastic

A team led by M.A.S.R. Saadi and Muhammad Maksud Rahman has developed a biomaterial that they hope could be used for the “next disposable water bottle." Photo courtesy Rice University.

Collaborators from two Houston universities are leading the way in engineering a biomaterial into a scalable, multifunctional material that could potentially replace plastic. The study introduced a biosynthesis technique that aligns bacterial cellulose fibers in real-time, which resulted in robust biopolymer sheets with “exceptional mechanical properties.” Ultimately, the scientists hope this discovery could be used for the “next disposable water bottle,” which would be made by biodegradable biopolymers in bacterial cellulose, an abundant resource on Earth. Additionally, the team sees applications for the materials in the packaging, breathable textiles, electronics, food and energy sectors.

Houston researchers reach 'surprising' revelation in materials recycling efforts

A team led by Matteo Pasquali, director of Rice’s Carbon Hub, has unveiled how carbon nanotube fibers can be a sustainable alternative to materials like steel, copper and aluminum. Photo by Jeff Fitlow/ Courtesy Rice University

Researchers at Rice University have demonstrated how carbon nanotube (CNT) fibers can be fully recycled without any loss in their structure or properties. The discovery shows that CNT fibers could be used as a sustainable alternative to traditional materials like metals, polymers and the larger, harder-to-recycle carbon fibers, which the team hopes can pave the way for more sustainable and efficient recycling efforts.