Here are six ideas for growing the energy industry workforce. Photo via Getty Images

Across the energy sector, companies are facing the growing challenge of finding skilled workers. In fact, 71% of energy employers say they are struggling to fill open roles. What is causing the shortage? A mix of factors, including an aging workforce, outdated perceptions of the industry and a rising global demand for energy.

This talent gap threatens progress on big goals like transitioning to cleaner energy, upgrading infrastructure and driving innovation in renewables. Solving the problem isn’t simple, but it is possible. It is going to take a coordinated, long-term approach that includes education, recruitment, training, retention and supportive policies. Let’s explore some practical solutions.

1. Build a strong foundation through STEM and career pathway awareness

Solving the workforce shortage starts well before college or the first job offer. We need to reach students early, with STEM education, career exposure and clear pathways to energy careers. Elementary, middle and high school programs that connect science and math with real-world energy applications can spark curiosity and show students the range of opportunities available in the energy industry.

Organizations like the Energy Education Foundation are helping by partnering with educators and employers to align curriculum with real industry needs and bring energy topics to life in the classroom. We also need to ensure students understand the full range of energy systems, from traditional oil and gas to renewables like wind and solar, as well as nuclear, hydrogen and other emerging technologies. A broad, well-rounded understanding of the entire energy value chain will better prepare them for the future of work in this dynamic industry.

As technologies evolve, so must the systems that prepare people to work with them. Energy companies can collaborate with universities, trade schools and community colleges to design programs that match today’s job requirements through hands-on apprenticeships, industry-recognized certifications and digital skills training.

Affordability can also be a barrier for many students who are interested in energy careers but face financial obstacles to higher education. While four-year degrees are important for some roles, they are not the only path into the industry. Trade schools, community colleges and certificate programs offer fast, affordable routes into high-demand jobs, often with strong earning potential right out of the gate. The industry can do more to elevate these options by promoting offshore, field and technical roles as innovative, high-impact careers.

2. Help today’s workforce learn new skills

As more energy companies adopt digital tools like automation, artificial intelligence and data analytics, there is a growing need for employees with the tech skills to match. But right now, there is a shortage of those skills across the board. That is why upskilling and reskilling current employees is so important. Companies can create internal training platforms, offer recognized certifications and explore immersive tools like virtual reality to simulate real-world scenarios. Cross-training employees to understand both traditional and renewable energy systems can also help build more flexible, future-ready teams.

3. Open the doors to broaden and diversify talent

The energy industry, being a global enterprise, has much to gain from embracing diversity across various dimensions, including cultural backgrounds, languages, work styles and time zone considerations. Research shows that culturally diverse companies are 33% more likely to out-innovate their competitors. These organizations are better equipped to generate a wide range of ideas and transform them into valuable products or services. The most successful firms offer equitable advancement opportunities, paid time off, family leave, mentoring and sponsorship programs and environments grounded in respect and fairness. These practices make a big difference not just in attracting talent, but in keeping it.

4. Use technology to support, not replace, people

From exploring new energy sources to managing the grid and storing power, technology is transforming the industry. But instead of replacing jobs, tools like AI and automation can be used to make work safer, smarter and more efficient. For instance, smart grid systems and AI-powered planning tools can cut downtime and boost productivity, freeing up skilled employees to focus on more strategic and creative tasks. When used thoughtfully, technology becomes an ally that helps teams do their best work.

5. Strengthen retention through purpose

While offering competitive salaries is important, it’s only one part of the equation. Many energy companies face challenges in areas such as career development, workplace culture and building trust in leadership. These elements play a significant role in shaping the employee experience and can strongly influence retention.

For younger professionals, particularly millennials and Gen Z, the opportunity to address sustainability challenges is especially compelling. A 2024 survey revealed that nearly 90% of respondents in these groups believe it’s essential for their work to make a difference, with 88% stating that their job should align with their personal values. Clean energy careers strongly align with these expectations. In fact, 81% of surveyed individuals see the clean energy sector as a promising career path. Among the top reasons cited were the sector’s positive environmental impact and the opportunity to be part of something larger than themselves. Even among those currently employed in unrelated fields, 65% expressed a willingness to pivot to a clean energy role, underscoring the growing demand for purpose-driven careers. People want to feel like their work matters and that they are growing. In a fast-evolving sector, building a strong team is about offering purpose, not just perks.

6. Embrace collaboration

No single company can solve the energy workforce shortage on its own. This is a shared challenge, and it needs a shared solution. That means governments, schools and businesses need to collaborate on everything from education to job training. As an example, it is critical to align training programs with real workforce needs. That means sharing data across sectors to understand where demand is heading and making sure employees are trained for the jobs of the future.

The energy sector is at a turning point. As we continue to embrace energy expansion, we need a workforce that can make it all happen. That requires more than quick fixes. It takes a long-term, inclusive approach that supports talent at every stage, from early education to career advancement. By investing in people as intentionally as we invest in technology and infrastructure, we can close the talent gap and build a workforce ready to power a stronger energy future.

---

Kristen Barley is the executive director of the Energy Education Foundation, a nonprofit dedicated to inspiring the next generation of energy leaders by providing comprehensive, engaging education that spans the entire energy spectrum.


It's time for a broader approach to ensure that the U.S. meets energy demands and leads the world in innovation and education. Photo via Getty Images

Fueling the future: Houston expert on how to build a workforce to meet America’s growing energy demands

guest column

U.S. energy consumption is projected to rise nearly 20 percent over the next decade — driven by advancements like AI, increasing electrification, and the growing demand for electric vehicles. While attention often centers on the technologies that generate power, the driver behind this transformation is the skilled workforce, which comprises men and women dedicated to enabling the nation's growth. Ensuring a steady supply of qualified workers is imperative for meeting the energy demands of the coming decade.

Developing this talent pipeline starts with a commitment to education. As the energy landscape evolves rapidly, educators play a crucial role in equipping the next generation with the skills to embrace new technologies and adapt to changing industry demands. This commitment to education is central to the Energy Education Foundation's (EEF) mission. It's also a cornerstone of EEF partner and board member, Coterra Energy's, efforts to be recognized as a leader in energy education.

At a recent Energy Education Exchange, hosted by Coterra and EEF, in collaboration with industry partners such as the American Petroleum Institute (API) and the Consumer Energy Alliance, over 50 educators and industry leaders gathered in Houston to address this need.

During the three-day event, educators, administrators, and industry professionals were immersed in the many facets of the oil and gas industry, learning best practices for incorporating energy education into their programs.

Educators experienced an in-depth tour of the San Jacinto College Center for Petrochemical, Energy, and Technology. As the largest petrochemical training facility in the Gulf Coast region, the center offered a unique look at industry-standard equipment, including a multifunctional glass pilot plant lab, a glycol distillation unit, and 35 specialized training labs. Participants engaged in demonstrations led by faculty and students, exploring circuits, on-campus refineries, and advanced machinery — essential experiences that bring classroom lessons to life.

The event also highlighted efforts at the high school level, exemplified by a presentation and tour at Energy Institute High School in Houston's historic Third Ward. The Institute showcased how project-based learning, robotics, and hands-on fabrication labs are shaping students' skills for the energy sector. The high school's mission aligns perfectly with EEF’s goals: sparking interest in energy among younger students, developing their skills, and paving a pathway toward lifelong careers in the industry.

API's "Lights On" reception concluded the first day, promoting networking among educators and industry professionals. By facilitating these connections, we are ensuring that educators learn about energy careers and establish ongoing relationships that can translate into opportunities for their students.

Keynotes throughout the exchange included Peter Beard, Senior Vice President of the Greater Houston Partnership, and Chris Menefee, President of Unit Drilling Company, who further emphasized the critical need for workforce development. Beard noted, "As our economy grows, we must ensure we have the electrons and the workforce to support that growth." He stressed that aligning skills with job requirements is more than just matching credentials; it's about upskilling and offering real career mobility.

Menefee echoed this sentiment, acknowledging the pressures on educators to prepare students for an ever-changing job market. He underscored his company's commitment to "quality over quantity" in hiring, prioritizing well-trained individuals, and emphasizing the value of strong foundational skills, which begin in the classroom, especially career and technology classrooms.

The Energy Day Festival in Houston provided an additional opportunity for educators and administrators to engage directly with the industry. Thousands attended, visiting booths set up by companies, trade groups, and educational institutions. EEF's own Mobile Energy Learning Units offered interactive exhibits designed to teach students of all ages about energy and career opportunities. The Units appearance at Energy Day was made possible by the American Petroleum Institute.

Looking forward, the U.S. must expand opportunities for the next generation of energy workers and provide educators with the necessary resources. The Energy Education Exchange is a significant step forward, but one initiative alone cannot shape an entire workforce. All stakeholders involved must invest in tools, training, and programs that empower educators and provide opportunities for students. As Domestic Policy Advisor Neera Tanden recently stated, "Apprenticeships are essential for advancing the economy and building critical skills."

It's time for a broader approach to ensure that the U.S. meets energy demands and leads the world in innovation and education. At the Energy Education Foundation, we are proud to be at the forefront of this mission, working alongside Coterra and other partners. By empowering educators, we empower the next generation—one that will fuel our nation's future. Together, we can build a workforce ready for the challenges ahead.

———

Kristen Barley is the executive director of the Energy Education Foundation, an organization dedicated to inspiring the next generation of energy leaders by providing comprehensive, engaging education that spans the entire energy spectrum.

Students in the program will have access to state-of-the-art simulation equipment, and be able to gain professional certifications. Photo via HISD

Chevron partners with HISD for unique training program for maritime industry

future workforce

Chevron Shipping is partnering with Houston Independent School District (HISD) in an effort to enhance Career and Technical Education (CTE) with new programming options.

One of the programs includes the Austin High School Maritime Studies program that is associated with Port of Houston Partnership in Maritime Education. Representatives from Chevron, HISD, and the Port of Houston participated in a signing ceremony at Austin High School in an event that featured a tour of the school's maritime-focused classrooms. The classrooms will serve as a hands-on learning environment that focuses on CTE and maritime careers.

“Chevron Shipping takes great pride in supporting the communities in which we operate, and we are excited to join forces with Austin High,” Barbara Pickering, president of Chevron Shipping Company said in a news release. “With a national and worldwide labor shortage in maritime related careers, this partnership will provide needed resources and open doors for students to pursue the abundant and lucrative career paths in the maritime industry – here in Houston and around the world.”

Students in the program will have access to state-of-the-art simulation equipment, and be able to gain professional certifications.

"Career and Technical Education is a critical component in preparing our students for the high-demand, high-skill jobs that are shaping the future of our workforce,” says Superintendent Mike Miles in a news release.

The program also includes development of skills to help them obtain careers in the maritime industry. Also included in the partnership will be guest lectures, workforce development, and mentorship opportunities with industry experts.

“By aligning our CTE programs with industry needs, we’re ensuring students have a direct pathway to rewarding careers in fields like maritime and shipping,” Miles adds. “This partnership is about giving our students real-world experience and opportunities that position them well after graduation."

Some of the key takeaways include strategies that include partnering for success, hands-on training programs, flexible education pathways, comprehensive support services, and early and ongoing outreach initiatives. Photo via Getty Images

New report maps Houston workforce development strategies as companies transition to cleaner energy

to-do list

The University of Houston’s Energy University latest study with UH’s Division of Energy and Innovation with stakeholders from the energy industry, academia have released findings from a collaborative white paper, titled "Workforce Development for the Future of Energy.”

UH Energy’s workforce analysis found that the greatest workforce gains occur with an “all-of-the-above” strategy to address the global shift towards low-carbon energy solutions. This would balance electrification and increased attention to renewables with liquid fuels, biomass, hydrogen, carbon capture, utilization and storage commonly known as CCUS, and carbon dioxide removal, according to a news release.

The authors of the paper believe this would support economic and employment growth, which would leverage workers from traditional energy sectors that may lose jobs during the transition.

The emerging hydrogen ecosystem is expected to create about 180,000 new jobs in the greater Houston area, which will offer an average annual income of approximately $75,000. Currently, 40 percent of Houston’s employment is tied to the energy sector.

“To sustain the Houston region’s growth, it’s important that we broaden workforce participation and opportunities,” Ramanan Krishnamoorti, vice president of energy and innovation at UH, says in a news release. “Ensuring workforce readiness for new energy jobs and making sure we include disadvantaged communities is crucial.”

Some of the key takeaways include strategies that include partnering for success, hands-on training programs, flexible education pathways, comprehensive support services, and early and ongoing outreach initiatives.

“The greater Houston area’s journey towards a low-carbon future is both a challenge and an opportunity,” Krishnamoorti continues. “The region’s ability to adapt and lead in this new era will depend on its commitment to collaboration, innovation, and inclusivity. By preparing its workforce, engaging its communities, and leveraging its industrial heritage, we can redefine our region and continue to thrive as a global energy leader.”

The study was backed by federal funding from the Department of the Treasury through the State of Texas under the Resources and Ecosystems Sustainability, Tourist Opportunities, and Revived Economies of the Gulf Coast States Act of 2012.

The program will allow students to learn at their own pace, and is supported seven days a week by tutorial and technical staff, and offers flexible payment options with a low initial registration fee. Photo via UH

Houston university debuts new program to develop wind turbine workforce

future technicians

University of Houston-Downtown announced a new Wind Turbine Technician Certificate Program.

UHD’s goal with the new program is to address the global need for workers skilled in servicing, diagnosing, repairing and installing wind turbines and other associated equipment.

The program will allow students to learn at their own pace, and is supported seven days a week by tutorial and technical staff, and offers flexible payment options with a low initial registration fee.

Some courses can be purchased as students work through them.The total cost is $1,750 for the entire program.

The course will be delivered in partnership with George Brown College in Toronto. George Brown College is a leader in distance learning, and one program highlight will be its 3D interactive wind turbine simulator. The wind turbine simulator will have key features like real-time visualization, interactive operation, pre-built lab projects, and Pitch and Yaw Ladder Logic applications, which shows how Programmable Logic Controllers (PLCs) are used to provide automatic control of wind turbines.

“The programs we develop at George Brown College feature robust technical simulation software so we can reach different students, like those looking to diversify their skills and can’t attend full time because of family or work commitments,” Colin Simpson, dean of continuous learning, says in a news release. “Additionally, our partnership with University of Houston-Downtown allows us to extend our reach to help train the U.S. clean energy workforce.”

According to Global Wind Energy Council’s Global Wind Report 2023, over half a million new wind technicians will be needed by 2026 to service the expected capacity increases, as wind generation is expected to more than double by 2030. Texas produces 26 percent of all U.S. wind-sourced electricity.

“Wind energy is one of the fastest-growing energy sources in the world, and as the largest wind producer in the United States, there is a growing need for skilled technicians in Texas,” UHD President Loren J. Blanchard adds. “By partnering with George Brown College, we’re able to leverage a unique online program to develop a skilled workforce for the wind energy sector in the state and beyond.”

Goodwill Houston, in collaboration with Accenture, BlocPower, and Goodwill Industries International hosted a celebration for the Clean Tech Accelerator. Photo courtesy of Accenture

Accenture, Goodwill-backed cleantech job accelerator celebrates Houston launch

up and running

A major nonprofit and a worldwide corporate leader have teamed up to advance cleantech jobs — and the program has officially celebrated its launch in Houston.

Goodwill Houston, in collaboration with Accenture, BlocPower, and Goodwill Industries International hosted a celebration for the Clean Tech Accelerator, an industry-focused full-time free jobs training program that was originally announced last year. The first cohort graduated earlier this year, and the second is ongoing.

"Through the CTA, we want to shape the future of sustainable energy in Houston by recruiting underrepresented jobseekers and equipping them with technical proficiency, safety and clean tech certifications, and facilitating placement with local employers," a representative from Accenture states in an email. "Following a quiet initial launch, this event was the official kickoff."

The event also demonstrated the opportunities within the CTA program for job seekers to prepare for the most in-demand clean energy careers in Houston. The accelerator is targeting a specific set of advanced energy jobs — the 40 percent that don't require college degrees and and pay more than the median salary in the United States.

According to Accenture and Goodwill, the plan is to grow the program to 20 cities in the next seven years and train an estimated 7,000 job seekers. The program, which was co-designed by Accenture, will be run by Goodwill. Participants identified as under and unemployed individuals and accepted into the program will be compensated as they undergo the training and career placement services.

"As our labor market transitions, we see important opportunities for people to move into more promising roles with better pay. It is essential that we provide the training and other support needed to ensure people capture these opportunities," Steve Preston, president and CEO of Goodwill Industries International, says in a news release announcing the program. "The Goodwill Clean Tech Accelerator will open doors for people in an expanding industry and provide support to employers who are helping us transition to a more sustainable world."

Members of the first two classes of the program were present at the event. Photo courtesy of Accenture

------

This article originally ran on InnovationMap.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston researchers develop energy-efficient film for AI chips

AI research

A team of researchers at the University of Houston has developed an innovative thin-film material that they believe will make AI devices faster and more energy efficient.

AI data centers consume massive amounts of electricity and use large cooling systems to operate, adding a strain on overall energy consumption.

“AI has made our energy needs explode,” Alamgir Karim, Dow Chair and Welch Foundation Professor at the William A. Brookshire Department of Chemical and Biomolecular Engineering at UH, explained in a news release. “Many AI data centers employ vast cooling systems that consume large amounts of electricity to keep the thousands of servers with integrated circuit chips running optimally at low temperatures to maintain high data processing speed, have shorter response time and extend chip lifetime.”

In a report recently published in ACS Nano, Karim and a team of researchers introduced a specialized two-dimensional thin film dielectric, or electric insulator. The film, which does not store electricity, could be used to replace traditional, heat-generating components in integrated circuit chips, which are essential hardware powering AI.

The thinner film material aims to reduce the significant energy cost and heat produced by the high-performance computing necessary for AI.

Karim and his former doctoral student, Maninderjeet Singh, used Nobel prize-winning organic framework materials to develop the film. Singh, now a postdoctoral researcher at Columbia University, developed the materials during his doctoral training at UH, along with Devin Shaffer, a UH professor of civil engineering, and doctoral student Erin Schroeder.

Their study shows that dielectrics with high permittivity (high-k) store more electrical energy and dissipate more energy as heat than those with low-k materials. Karim focused on low-k materials made from light elements, like carbon, that would allow chips to run cooler and faster.

The team then created new materials with carbon and other light elements, forming covalently bonded sheetlike films with highly porous crystalline structures using a process known as synthetic interfacial polymerization. Then they studied their electronic properties and applications in devices.

According to the report, the film was suitable for high-voltage, high-power devices while maintaining thermal stability at elevated operating temperatures.

“These next-generation materials are expected to boost the performance of AI and conventional electronics devices significantly,” Singh added in the release.

---

This article originally appeared on our sister site, InnovationMap.

Energy expert: What 2025 revealed about the evolution of Texas power

guest column

2025 marked a pivotal year for Texas’ energy ecosystem. Rising demand, accelerating renewable integration, tightening reserve margins and growing industrial load reshaped the way policymakers, utilities and the broader market think about reliability.

This wasn’t just another year of operational challenges; it was a clear signal that the state is entering an era where growth and innovation must move together in unison if Texas is going to keep pace.

What happened in 2025 is already influencing the decisions utilities, regulators and large energy consumers will make in 2026 and beyond. If Texas is going to remain the nation’s proving ground for large-scale energy innovation, this year made one thing clear: we need every tool working together and working smarter.

What changed: Grid, policy & the growth of renewables

This year, ERCOT recorded one of the steepest demand increases in its history. From January through September 2025, electricity consumption reached 372 terawatt-hours (TWh), a 5 percent increase over the previous year and a 23 percent jump since 2021. That growth officially positions ERCOT as the fastest-expanding large grid in the country.

To meet this rising load, Texas leaned heavily on clean energy. Solar, wind and battery storage served approximately 36 percent of ERCOT’s electricity needs over the first nine months of the year, a milestone that showcased how quickly Texas has diversified its generation mix. Utility-scale solar surged to 45 TWh, up 50 percent year-over-year, while wind generation reached 87 TWh, a 36 percent increase since 2021.

Battery storage also proved its value. What was once niche is now essential: storage helped shift mid-day excess solar to evening peaks, especially during a historic week in early spring when Texas hit new highs for simultaneous wind, solar and battery output.

Still, natural gas remained the backbone of reliability. Dispatchable thermal resources supplied more than 50 percent of ERCOT’s power 92 percent of the time in Q3 2025. That dual structure of fast-growing renewables backed by firm gas generation is now the defining characteristic of Texas’s energy identity.

But growth cuts both ways. Intermittent generation is up, yet demand is rising faster. Storage is scaling, but not quite at the rate required to fill the evening reliability gap. And while new clean-energy projects are coming online rapidly, the reality of rising population, data center growth, electrification and heavy industrial expansion continues to outpace the additions.

A recent forecast from the Texas Legislative Study Group projects demand could climb another 14 percent by mid-2026, tightening reserve margins unless meaningful additions in capacity, or smarter systemwide usage, arrive soon.

What 2025 meant for the energy ecosystem

The challenges of 2025 pushed Texas to rethink reliability as a shared responsibility between grid operators, generation companies, large load customers, policymakers and consumers. The year underscored several realities:

1. The grid is becoming increasingly weather-dependent. Solar thrives in summer; wind dominates in spring and winter. But extreme heat waves and cold snaps also push demand to unprecedented levels. Reliability now hinges on planning for volatility, not just averages.

2. Infrastructure is straining under rapid load growth. The grid handled multiple stress events in 2025, but it required decisive coordination and emerging technologies, such as storage methods, to do so.

3. Innovation is no longer optional. Advanced forecasting, grid-scale batteries, demand flexibility tools, and hybrid renewable-gas portfolios are now essential components of grid stability.

4. Data centers and industrial electrification are changing the game. Large flexible loads present both a challenge and an opportunity. With proper coordination, they can help stabilize the grid. Without it, they can exacerbate conditions of scarcity.

Texas can meet these challenges, but only with intentional leadership and strong public-private collaboration.

The system-level wins of 2025

Despite volatility, 2025 showcased meaningful progress:

Renewables proved their reliability role. Hitting 36 percent of ERCOT’s generation mix for three consecutive quarters demonstrates that wind, solar and batteries are no longer supplemental — they’re foundational.

Storage emerged as a real asset for reliability. Battery deployments doubled their discharge records in early 2025, showing the potential of short-duration storage during peak periods.

The dual model works when balanced wisely. Natural gas continues to provide firm reliability during low-renewable hours. When paired with renewable growth, Texas gains resilience without sacrificing affordability.

Energy literacy increased across the ecosystem. Communities, utilities and even industrial facilities are paying closer attention to how loads, pricing signals, weather and grid conditions interact—a necessary cultural shift in a fast-changing market.

Where Texas goes in 2026

Texas heads into 2026 with several unmistakable trends shaping the road ahead. Rate adjustments will continue as utilities like CenterPoint request cost recovery to strengthen infrastructure, modernize outdated equipment and add the capacity needed to handle record-breaking growth in load.

At the same time, weather-driven demand is expected to stay unpredictable. While summer peaks will almost certainly set new records, winter is quickly becoming the bigger wild card, especially as natural gas prices and heating demand increasingly drive both reliability planning and consumer stress.

Alongside these pressures, distributed energy is set for real expansion. Rooftop solar, community battery systems and hybrid generation-storage setups are no longer niche upgrades; they’re quickly becoming meaningful grid assets that help support reliability at scale.

And underlying all of this is a cultural shift toward energy literacy. The utilities, regulators, businesses, and institutions that understand load flexibility, pricing signals and efficiency strategies will be the ones best positioned to manage costs and strengthen the grid. In a market that’s evolving this fast, knowing how we use energy matters just as much as knowing how much.

The big picture: 2025 as a blueprint for a resilient future

If 2025 showed us anything, it’s that Texas can scale innovation at a pace few states can match. We saw record renewable output, historic storage milestones and strong thermal performance during strain events. The Texas grid endured significant stress but maintained operational integrity.

But it also showed that reliability isn’t a static achievement; it’s a moving target. As population growth, AI and industrial electrification and weather extremes intensify, Texas must evolve from a reactive posture to a proactive one.

The encouraging part is that Texas has the tools, the talent and the market structure to build one of the most resilient and future-ready power ecosystems in the world. The test ahead isn’t whether we can generate enough power; it’s whether we can coordinate systems, technologies and market behavior fast enough to meet the moment.

And in 2026, that coordination is precisely where the opportunity lies.

———

Sam Luna is director at BKV Energy, where he oversees brand and go-to-market strategy, customer experience, marketing execution, and more.

Blackstone clears major step in acquisition of TXNM Energy

power deal

A settlement has been reached in a regulatory dispute over Blackstone Infrastructure’s pending acquisition of TXNM Energy, the parent company of Texas-New Mexico Power Co. , which provides electricity in the Houston area. The settlement still must be approved by the Public Utility Commission of Texas.

Aside from Public Utility Commission staffers, participants in the settlement include TXNM Energy, Texas cities served by Texas-New Mexico Power, the Texas Office of Public Utility Counsel, Texas Industrial Energy Consumers, Walmart and the Texas Energy Association for Marketers.

Texas-New Mexico Power, based in the Dallas-Fort Worth suburb of Lewisville, supplies electricity to more than 280,000 homes and businesses in Texas. Ten cities are in Texas-New Mexico Power’s Houston-area service territory:

  • Alvin
  • Angleton
  • Brazoria
  • Dickinson
  • Friendswood
  • La Marque
  • League City
  • Sweeny
  • Texas City
  • West Columbia

Under the terms of the settlement, Texas-New Mexico Power must:

  • Provide a $45.5 million rate credit to customers over 48 months, once the deal closes
  • Maintain a seven-member board of directors, including three unaffiliated directors as well as the company’s president and CEO
  • Embrace “robust” financial safeguards
  • Keep its headquarters within the utility’s Texas service territory
  • Avoid involuntary layoffs, as well as reductions of wages or benefits related to for-cause terminations or performance issues

The settlement also calls for Texas-New Mexico Power to retain its $4.2 billion five-year capital spending plan through 2029. The plan will help Texas-New Mexico Power cope with rising demand; peak demand increased about 66 percent from 2020 to 2024.

Citing the capital spending plan in testimony submitted to the Public Utility Commission, Sebastian Sherman, senior managing director of Blackstone Infrastructure, said Texas-New Mexico Power “needs the right support to modernize infrastructure, to strengthen the grid against wildfire and other risks, and to meet surging electricity demand in Texas.”

Blackstone Infrastructure, which has more than $64 billion in assets under management, agreed in August to buy TXNM Energy in a $11.5 billion deal.

Neal Walker, president of Texas-New Mexico Power, says the deal will help his company maintain a reliable, resilient grid, and offer “the financial resources necessary to thrive in this rapidly changing energy environment and meet the unprecedented future growth anticipated across Texas.”