growing the workforce

Green jobs accelerator to launch to Houston, other cities with corporate and nonprofit partnership

The Goodwill Clean Tech Accelerator is a partnership between Goodwill and Accenture that will equip participants with employability and technical skills for entry-level jobs across the energy transition. Photo via Getty Images

A major nonprofit and a worldwide corporate leader have teamed up to advance clean tech jobs.

The Goodwill Clean Tech Accelerator is a partnership between Goodwill and Accenture that will equip participants with employability and technical skills for entry-level jobs across solar and storage, electric vehicles, heat pumps, and energy efficiency, according to a news release from the organizations.

The program launch next year in Houston, as well as in Atlanta, Nashville, and Detroit, as the two organizations announced in at the U.S. Chamber of Commerce Foundation's Talent Forward event. According to Accenture and Goodwill, the plan is to grow the program to 20 cities in the next seven years and train an estimated 7,000 job seekers.

"As our labor market transitions, we see important opportunities for people to move into more promising roles with better pay. It is essential that we provide the training and other support needed to ensure people capture these opportunities," Steve Preston, president and CEO of Goodwill Industries International, says in the release. "The Goodwill Clean Tech Accelerator will open doors for people in an expanding industry and provide support to employers who are helping us transition to a more sustainable world."

The accelerator is targeting a specific set of advanced energy jobs — the 40 percent that don't require college degrees and and pay more than the median salary in the United States.

"The clean energy transition is demanding new sources of talent who understand clean tech and can apply that knowledge to achieve decarbonization," Manish Sharma, CEO of Accenture North America, shares in the statement. "Through the Goodwill Clean Tech Accelerator, we're proud to unlock skilling opportunities that are accessible to everyone, benefitting workers, industry and our local communities."

The program, which was co-designed by Accenture, will be run by Goodwill. Participants identified as under and unemployed individuals and accepted into the program will be compensated as they undergo the training and career placement services.

Beginning through an Accenture Corporate Citizenship investment, the accelerator is based on experience from Skills to Succeed. GRID Alternatives, ChargerHelp! and BlocPower are additional training partners for the program, with more to be announced as the initiative is scaled.

Trending News

A View From HETI

Researchers from Rice University say their recent findings could revolutionize power grids, making energy transmission more efficient. Image via Getty Images.

A new study from researchers at Rice University, published in Nature Communications, could lead to future advances in superconductors with the potential to transform energy use.

The study revealed that electrons in strange metals, which exhibit unusual resistance to electricity and behave strangely at low temperatures, become more entangled at a specific tipping point, shedding new light on these materials.

A team led by Rice’s Qimiao Si, the Harry C. and Olga K. Wiess Professor of Physics and Astronomy, used quantum Fisher information (QFI), a concept from quantum metrology, to measure how electron interactions evolve under extreme conditions. The research team also included Rice’s Yuan Fang, Yiming Wang, Mounica Mahankali and Lei Chen along with Haoyu Hu of the Donostia International Physics Center and Silke Paschen of the Vienna University of Technology. Their work showed that the quantum phenomenon of electron entanglement peaks at a quantum critical point, which is the transition between two states of matter.

“Our findings reveal that strange metals exhibit a unique entanglement pattern, which offers a new lens to understand their exotic behavior,” Si said in a news release. “By leveraging quantum information theory, we are uncovering deep quantum correlations that were previously inaccessible.”

The researchers examined a theoretical framework known as the Kondo lattice, which explains how magnetic moments interact with surrounding electrons. At a critical transition point, these interactions intensify to the extent that the quasiparticles—key to understanding electrical behavior—disappear. Using QFI, the team traced this loss of quasiparticles to the growing entanglement of electron spins, which peaks precisely at the quantum critical point.

In terms of future use, the materials share a close connection with high-temperature superconductors, which have the potential to transmit electricity without energy loss, according to the researchers. By unblocking their properties, researchers believe this could revolutionize power grids and make energy transmission more efficient.

The team also found that quantum information tools can be applied to other “exotic materials” and quantum technologies.

“By integrating quantum information science with condensed matter physics, we are pivoting in a new direction in materials research,” Si said in the release.

Trending News