The grant, funded by the federal Inflation Reduction Act, will help promote cleaner air, reduced emissions, and green jobs. Photo via Getty Images

Port Houston’s PORT SHIFT program is receiving nearly $3 million from the U.S. Environmental Protection Agency’s Clean Ports Program.

The grant, funded by the federal Inflation Reduction Act, will help promote cleaner air, reduced emissions, and green jobs.

“With its ambitious PORT SHIFT program, Houston is taking a bold step toward a cleaner, more sustainable future, and I’m proud to have helped make this possible by voting for the Inflation Reduction Act,” U.S. Rep. Sylvia Garcia says in a news release.

“PORT SHIFT is about more than moving cargo — it’s about building a port that’s prepared for the future and a community that’s healthier and stronger,” Garcia adds. “With investments in zero-emission trucks, cleaner cargo handling, workforce training, and community engagement, Port Houston is setting the standard for what ports across America can accomplish.”

Joaquin Martinez, a member of the Houston City Council, says one of the benefits of the grant will be ensuring power readiness for all seven wharves at the Bayport Container Terminal.

The Inflation Reduction Act allocated $3 billion to the EPA’s Clean Ports Program to fund zero-emission equipment and climate planning at U.S. ports.

The Goodwill Clean Tech Accelerator is a partnership between Goodwill and Accenture that will equip participants with employability and technical skills for entry-level jobs across the energy transition. Photo via Getty Images

Green jobs accelerator to launch to Houston, other cities with corporate and nonprofit partnership

growing the workforce

A major nonprofit and a worldwide corporate leader have teamed up to advance clean tech jobs.

The Goodwill Clean Tech Accelerator is a partnership between Goodwill and Accenture that will equip participants with employability and technical skills for entry-level jobs across solar and storage, electric vehicles, heat pumps, and energy efficiency, according to a news release from the organizations.

The program launch next year in Houston, as well as in Atlanta, Nashville, and Detroit, as the two organizations announced in at the U.S. Chamber of Commerce Foundation's Talent Forward event. According to Accenture and Goodwill, the plan is to grow the program to 20 cities in the next seven years and train an estimated 7,000 job seekers.

"As our labor market transitions, we see important opportunities for people to move into more promising roles with better pay. It is essential that we provide the training and other support needed to ensure people capture these opportunities," Steve Preston, president and CEO of Goodwill Industries International, says in the release. "The Goodwill Clean Tech Accelerator will open doors for people in an expanding industry and provide support to employers who are helping us transition to a more sustainable world."

The accelerator is targeting a specific set of advanced energy jobs — the 40 percent that don't require college degrees and and pay more than the median salary in the United States.

"The clean energy transition is demanding new sources of talent who understand clean tech and can apply that knowledge to achieve decarbonization," Manish Sharma, CEO of Accenture North America, shares in the statement. "Through the Goodwill Clean Tech Accelerator, we're proud to unlock skilling opportunities that are accessible to everyone, benefitting workers, industry and our local communities."

The program, which was co-designed by Accenture, will be run by Goodwill. Participants identified as under and unemployed individuals and accepted into the program will be compensated as they undergo the training and career placement services.

Beginning through an Accenture Corporate Citizenship investment, the accelerator is based on experience from Skills to Succeed. GRID Alternatives, ChargerHelp! and BlocPower are additional training partners for the program, with more to be announced as the initiative is scaled.

According to the facts, Houston's energy transition is moving in the right direction. Photo via Getty Images

Report: Houston's energy transition economy sees momentum, including $6.1B in financing in 2022

Houston facts

In Houston, the energy transition movement is in full effect — at least, according to the facts and figures from a recently released report.

The Greater Houston Partnership released its 2023 Houston Facts report, which analyzes the business community across sectors. The report highlights the fact that last year Houston's energy transition brought in $6.1 billion in financing from private market investments, which represents a 61.9 percent increase compared to 2021.

"Over the last five years, Houston has seen constant growth in annual energy transition investments, with a notable surge observed from 2020 onwards," reads the report.

Corporate and strategic merger and acquisition investments are what dominated the five deal types, according to the report, representing 68.8 percent of the total investment in 2022. Additionally, private equity accounted for 19.3 percent of all deals, with venture capital comprising 9.5 percent.

Source: GHP analysis of data from the U.S. Environmental Protection Agency, Greenhouse Gas Reporting Program (GHGRP)

According to Houston Facts, there are 550 Houston-based energy transition companies working in battery/energy storage, biofuels, carbon capture, use, and storage, circular economy, and other energy value chains.

The report also looked at clean energy job growth, which increased from 66,047 professionals in the Houston metro area in 2021 to projected increase to 71,305 jobs in 2022. The fastest growing type of clean energy job is within energy efficiency, a section that accounts for 68.1 percent of total clean energy employment last year, which increased 28.2 percent from 2021. Additionally, clean vehicle employment also saw a 14.7 percent increase while job counts in grid and storage and clean fuel applications declined notably in 2022, per the report.

Compared nationally, personal finance website SmartAsset recently ranked the Houston metro area as the fifth best place in the U.S. for green jobs, which pay an average of 21 percent more than other jobs. The SmartAsset study found that 2.23 percent of workers in the Houston area hold down jobs classified as “green.”

Source: GHP analysis and estimates of data from the U.S. Energy and Employment Report (USEER) and The Energy Futures Initiative (EFI), the National Association of State Energy Officials (NASEO), BW Research Partnership (BWRP) and E2 (Environmental Entrepreneurs)

The report also analyzed Houston's progress when it comes to emissions. Here are some of the Houston Facts on emission data from the U.S. Environment Protection Agency and the Greenhouse Gas Reporting Program:

  • Houston's power plant sector was as the largest greenhouse gas emitter with 43.2 percent of the region's total industrial emissions, and the sector has had an overall increasing trend over the past few years.
  • With 27.5 percent of industrial emissions, the chemicals sector came in No. 2, but the sector peaked in 2018, slightly declined in 2019, and have remained relatively constant through 2021.
  • Refineries ranked third, with for 21.2 percent of emissions, and have remained stable without notable increase over the past few years.
  • Petroleum and natural gas sector emissions have consistently increased since 2012, except for 2017. That year, Houston's overall emission rate reached its lowest point in the past decade at 225.1 mtCO2e.
  • Currently, Houston's emission rate is slightly below the highest point of the past ten years, which was 243.2 mtCO2e recorded in 2012.
Houston Facts, as well as other reports and resources, is available on GHP's website.
Houston ranks in the top five cities for green jobs, which pay on average 21 percent more than other jobs. Photo via Getty Images

Report: Houston recognized in the top 5 cities for green jobs

clean tech biz

Green jobs are generating more green — aka money — for workers in the Houston area.

Personal finance website SmartAsset recently ranked the Houston metro area as the fifth best place in the U.S. for green jobs, which pay an average of 21 percent more than other jobs. The SmartAsset study found that 2.23 percent of workers in the Houston area hold down jobs classified as “green.”

“Houston is known as being an energy hub, especially for oil. So this metro area ranking fifth may surprise some people. However, the green industry is pretty big around Houston, too,” says SmartAsset.

Topping the SmartAsset list is Dallas, followed by Denver; Newark, New Jersey; Oakland, California; and Houston.

The release of the SmartAsset study preceded a new report from the U.S. Department of Energy showing Texas added slightly more than 5,100 jobs in clean energy from 2021 to 2022. That’s a gain of 3.5 percent. Last year, Texas boasted a little over 396,000 jobs in the clean energy sector, the report says.

In the energy sector as a whole, Texas added the most jobs (nearly 51,000) of any state from 2021 to 2022, followed by California (almost 21,200), and Pennsylvania (nearly 15,200), according to the DOE report.

To determine the best places for green jobs, SmartAsset crunched data for the 50 largest U.S. metro areas that included the percentage of workers holding down green jobs, the average earnings for green jobs, and the average green worker’s earnings compared with the average worker’s earnings.

The U.S. Bureau of Labor Statistics supplies two definitions for green jobs:

  • Jobs in businesses that provide goods or provide services benefiting the environment or conserving natural resources.
  • Jobs in which workers’ duties involve making their employers’ processes more environmentally friendly.

The bureau lists these as the 10 highest-paying green jobs (followed by the median annual pay in 2021):

  • Biochemist or biophysicist, $102,270
  • Materials scientist, $100,090
  • Environmental engineer, $96,820
  • Atmospheric scientist, $94,570
  • Hydrologist, $84,030
  • Geoscientist, $83,680
  • Chemist, $79,430
  • Microbiologist, $79,260
  • Environmental scientist, $76,530
  • Conversation scientist, $63,750

Even though many green jobs in the U.S. are in renewable energy, that sector remains smaller than the traditional oil and gas industry, according to a recent report from career website LinkedIn. However, the growth of U.S. job postings in renewable energy (69 percent) surpassed the growth of job postings in the oil and gas industry (57) during the first three months of 2023 compared with the same period in 2022.

Globally, the growing demand for green-job skills is “outpacing the increase in supply, raising the prospect of an imminent green skills shortage,” the LinkedIn report says.

Among the sectors seeking workers with those skills are solar and wind power. Texas tallied almost 11,800 solar energy jobs and nearly 25,500 wind energy jobs in 2021, according to a DOE report.

Some observers believe Texas is positioned to become the world’s clean energy capital — and home to thousands more green jobs — with Houston poised to lead the way.

“Industry leaders believe the [Houston] region’s relatively high concentration of engineering talent, a solid base of support services for complex, large-scale offshore and onshore drilling projects, and legacy oil and gas infrastructure can be leveraged to assist in the energy transition and decarbonization,” the Federal Reserve Bank of Dallas says in a 2022 report.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

ExxonMobil, Rice launch sustainability initiative with first project underway

power partners

Houston-based ExxonMobil and Rice University announced a master research agreement this week to collaborate on research initiatives on sustainable energy efforts and solutions. The agreement includes one project that’s underway and more that are expected to launch this year.

“Our commitment to science and engineering, combined with Rice’s exceptional resources for research and innovation, will drive solutions to help meet growing energy demand,” Mike Zamora, president of ExxonMobil Technology and Engineering Co., said in a news release. “We’re thrilled to work together with Rice.”

Rice and Exxon will aim to develop “systematic and comprehensive solutions” to support the global energy transition, according to Rice. The university will pull from the university’s prowess in materials science, polymers and catalysts, high-performance computing and applied mathematics.

“Our agreement with ExxonMobil highlights Rice’s ability to bring together diverse expertise to create lasting solutions,” Ramamoorthy Ramesh, executive vice president for research at Rice, said in the release. “This collaboration allows us to tackle key challenges in energy, water and resource sustainability by harnessing the power of an interdisciplinary systems approach.”

The first research project under the agreement focuses on developing advanced technologies to treat desalinated produced water from oil and gas operations for potential reuse. It's being led by Qilin Li, professor of civil and environmental engineering at Rice and co-director of the Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment (NEWT) Center.

Li’s research employs electrochemical advanced oxidation processes to remove harmful organic compounds and ammonia-nitrogen, aiming to make the water safe for applications such as agriculture, wildlife and industrial processes. Additionally, the project explores recovering ammonia and producing hydrogen, contributing to sustainable resource management.

Additional projects under the agreement with Exxon are set to launch in the coming months and years, according to Rice.

Houston geothermal company secures major power purchase agreement with Shell

under contract

Beginning in 2026, Shell will be able to apply 31 megawatts of 24/7 carbon-free geothermal power to its customers thanks to a new 15-year power purchase agreement with Houston next-gen geothermal development company Fervo Energy.

“This agreement demonstrates that Fervo is stepping up to meet the moment,” Dawn Owens, VP, Head of Development & Commercial Markets at Fervo, said in a news release.

Shell will become the first offtaker to receive electrons from Fervo's flagship geothermal development in Beaver County, Utah’s Phase I of Cape Station. Cape Station is currently one of the world’s largest enhanced geothermal systems (EGS) developments, and the station will begin to deliver electricity to the grid in 2026.

Cape Station will increase from 400 MW to 500 MW, which is considered by the company a major accomplishment due to recent breakthroughs in Fervo’s field development strategy and well design. Fervo is now able to generate more megawatts per well by optimizing well spacing using fiber optic sensing, increasing casing diameter and implementing staggered bench development. This can allow for a 100 MW capacity increase without the need for additional drilling, according to the company.

With the addition of the new Shell deal, all 500 MW of capacity from Fervo’s Cape Station are now fully contracted. The deal also includes existing agreements, like Fervo’s PPAs with Southern California Edison and an expanded deal with Clean Power Alliance that adds 18 MW of carbon-free geothermal energy to the company’s existing PPA with Fervo.

“As customers seek out 24/7 carbon-free energy, geothermal is clearly an essential part of the solution,” Owens said in the release.

Houston expert: From EVs to F-35s — materials that power our future are in short supply

guest column

If you’re reading this on a phone, driving an EV, flying in a plane, or relying on the power grid to keep your lights on, you’re benefiting from critical minerals. These are the building blocks of modern life. Things like copper, lithium, nickel, rare earth elements, and titanium, they’re found in everything from smartphones to solar panels to F-35 fighter jets.

In short: no critical minerals, no modern economy.

These minerals aren’t just useful, they’re essential. And in the U.S., we don’t produce enough of them. Worse, we’re heavily dependent on countries that don’t always have our best interests at heart. That’s a serious vulnerability, and we’ve done far too little to fix it.

Where We Use Them and Why We’re Behind

Let’s start with where these minerals show up in daily American life:

  • Electric vehicles need lithium, cobalt, and nickel for batteries.
  • Wind turbines and solar panels rely on rare earths and specialty metals.
  • Defense systems require titanium, beryllium, and rare earths.
  • Basic infrastructure like power lines and buildings depend on copper and aluminum.

You’d think that something so central to the economy, and to national security, would be treated as a top priority. But we’ve let production and processing capabilities fall behind at home, and now we’re playing catch-up.

The Reality Check: We’re Not in Control

Right now, the U.S. is deeply reliant on foreign sources for critical minerals, especially China. And it’s not just about mining. China dominates processing and refining too, which means they control critical links in the supply chain.

Gabriel Collins and Michelle Michot Foss from the Baker Institute lay all this out in a recent report that every policymaker should read. Their argument is blunt: if we don’t get a handle on this, we’re in trouble, both economically and militarily.

China has already imposed export controls on key rare earth elements like dysprosium and terbium which are critical for magnets, batteries, and defense technologies, in direct response to new U.S. tariffs. This kind of tit-for-tat escalation exposes just how much leverage we’ve handed over. If this continues, American manufacturers could face serious material shortages, higher costs, and stalled projects.

We’ve seen this movie before, in the pandemic, when supply chains broke and countries scrambled for basics like PPE and semiconductors. We should’ve learned our lesson.

We Do Have a Stockpile, But We Need a Strategy

Unlike during the Cold War, the U.S. no longer maintains comprehensive strategic reserves across the board, but we do have stockpiles managed by the Defense Logistics Agency. The real issue isn’t absence, it’s strategy: what to stockpile, how much, and under what assumptions.

Collins and Michot Foss argue for a more robust and better-targeted approach. That could mean aiming for 12 to 18 months worth of demand for both civilian and defense applications. Achieving that will require:

  • Smarter government purchasing and long-term contracts
  • Strategic deals with allies (e.g., swapping titanium for artillery shells with Ukraine)
  • Financing mechanisms to help companies hold critical inventory for emergency use

It’s not cheap, but it’s cheaper than scrambling mid-crisis when supplies are suddenly cut off.

The Case for Advanced Materials: Substitutes That Work Today

One powerful but often overlooked solution is advanced materials, which can reduce our dependence on vulnerable mineral supply chains altogether.

Take carbon nanotube (CNT) fibers, a cutting-edge material invented at Rice University. CNTs are lighter, stronger, and more conductive than copper. And unlike some future tech, this isn’t hypothetical: we could substitute CNTs for copper wire harnesses in electrical systems today.

As Michot Foss explained on the Energy Forum podcast:

“You can substitute copper and steel and aluminum with carbon nanotube fibers and help offset some of those trade-offs and get performance enhancements as well… If you take carbon nanotube fibers and you put those into a wire harness… you're going to be reducing the weight of that wire harness versus a metal wire harness like we already use. And you're going to be getting the same benefit in terms of electrical conductivity, but more strength to allow the vehicle, the application, the aircraft, to perform better.”

By accelerating R&D and deployment of CNTs and similar substitutes, we can reduce pressure on strained mineral supply chains, lower emissions, and open the door to more secure and sustainable manufacturing.

We Have Tools. We Need to Use Them.

The report offers a long list of solutions. Some are familiar, like tax incentives, public-private partnerships, and fast-tracked permits. Others draw on historical precedent, like “preclusive purchasing,” a WWII tactic where the U.S. bought up materials just so enemies couldn’t.

We also need to get creative:

  • Repurpose existing industrial sites into mineral hubs
  • Speed up R&D for substitutes and recycling
  • Buy out risky foreign-owned assets in friendlier countries

Permitting remains one of the biggest hurdles. In the U.S., it can take 7 to 10 years to approve a new critical minerals project, a timeline that doesn’t match the urgency of our strategic needs. As Collins said on the Energy Forum podcast:

“Time kills deals... That’s why it’s more attractive generally to do these projects elsewhere.”

That’s the reality we’re up against. Long approval windows discourage investment and drive developers to friendlier jurisdictions abroad. One encouraging step is the use of the Defense Production Act to fast-track permitting under national security grounds. That kind of shift, treating permitting as a strategic imperative, must become the norm, not the exception.

It’s Time to Redefine Sustainability

Sustainability has traditionally focused on cutting carbon emissions. That’s still crucial, but we need a broader definition. Today, energy and materials security are just as important.

Countries are now weighing cost and reliability alongside emissions goals. We're also seeing renewed attention to recycling, biodiversity, and supply chain resilience.

Net-zero by 2050 is still a target. But reality is forcing a more nuanced discussion:

  • What level of warming is politically and economically sustainable?
  • What tradeoffs are we willing to make to ensure energy access and affordability?

The bottom line: we can’t build a clean energy future without secure access to materials. Recycling helps, but it’s not enough. We'll need new mines, new tech, and a more flexible definition of sustainability.

My Take: We’re Running Out of Time

This isn’t just a policy debate. It’s a test of whether we’ve learned anything from the past few years of disruption. We’re not facing an open war, but the risks are real and growing.

We need to treat critical minerals like what they are: a strategic necessity. That means rebuilding stockpiles, reshoring processing, tightening alliances, and accelerating permitting across the board.

It won’t be easy. But if we wait until a real crisis hits, it’ll be too late.

———

Scott Nyquist is a senior advisor at McKinsey & Company and vice chairman, Houston Energy Transition Initiative of the Greater Houston Partnership. The views expressed herein are Nyquist's own and not those of McKinsey & Company or of the Greater Houston Partnership. This article originally appeared on LinkedIn on April 11, 2025.