The Goodwill Clean Tech Accelerator is a partnership between Goodwill and Accenture that will equip participants with employability and technical skills for entry-level jobs across the energy transition. Photo via Getty Images

A major nonprofit and a worldwide corporate leader have teamed up to advance clean tech jobs.

The Goodwill Clean Tech Accelerator is a partnership between Goodwill and Accenture that will equip participants with employability and technical skills for entry-level jobs across solar and storage, electric vehicles, heat pumps, and energy efficiency, according to a news release from the organizations.

The program launch next year in Houston, as well as in Atlanta, Nashville, and Detroit, as the two organizations announced in at the U.S. Chamber of Commerce Foundation's Talent Forward event. According to Accenture and Goodwill, the plan is to grow the program to 20 cities in the next seven years and train an estimated 7,000 job seekers.

"As our labor market transitions, we see important opportunities for people to move into more promising roles with better pay. It is essential that we provide the training and other support needed to ensure people capture these opportunities," Steve Preston, president and CEO of Goodwill Industries International, says in the release. "The Goodwill Clean Tech Accelerator will open doors for people in an expanding industry and provide support to employers who are helping us transition to a more sustainable world."

The accelerator is targeting a specific set of advanced energy jobs — the 40 percent that don't require college degrees and and pay more than the median salary in the United States.

"The clean energy transition is demanding new sources of talent who understand clean tech and can apply that knowledge to achieve decarbonization," Manish Sharma, CEO of Accenture North America, shares in the statement. "Through the Goodwill Clean Tech Accelerator, we're proud to unlock skilling opportunities that are accessible to everyone, benefitting workers, industry and our local communities."

The program, which was co-designed by Accenture, will be run by Goodwill. Participants identified as under and unemployed individuals and accepted into the program will be compensated as they undergo the training and career placement services.

Beginning through an Accenture Corporate Citizenship investment, the accelerator is based on experience from Skills to Succeed. GRID Alternatives, ChargerHelp! and BlocPower are additional training partners for the program, with more to be announced as the initiative is scaled.

At a recent event in Houston, energy transition experts shared opportunities in renewables and sustainability. Photo by Lindsey Ferrell/EnergyCapital

Energy transition opportunities are heading to Texas and beyond, according to these experts

incoming

The energy industry in Houston, Texas, and beyond is gearing up for new opportunities within the energy transition, as a recent Houston event and its lineup of experts shared.

At the inaugural ENERGYEAR USA 2023, panelists outlined how their companies are opting into a more personable approach to building sustainable energy solutions – and sustainable communities.

“Most of our renewable projects are in very rural areas. We come to communities that don’t have enough money to invest in their schools, their kids. There’s not a lot of opportunity,” explains David Carroll, chief renewables officer and senior vice president of the North America region for Engie.

“We come in and invest a lot in the construction phase, but after that, we have workers that live there. We are often one of the largest taxpayers in that area,” Carroll continues. “We can provide them cash profit, provide them the tax base, so that we can help provide a future in many of these rural communities that were struggling before we got there.”

Engie, which has closed several coal plants globally ahead of schedule to work toward meeting their commitment to Net Zero by 2045, isn’t the only organization that emphasizes purpose in its pursuit of energy equity.

Power Electronics, the global leader in renewable energy storage, finds purpose through re-purposing field technicians. For the past five years, the organization has transformed talent with electrical equipment experience from the oil and gas industry into renewables. The company doesn’t plan on slowing down, either.

“We are proud to announce here today [that over] the next two years, we will create more than 500 jobs as the largest ever manufacturer of solar inverter and intermediate scale battery inverters in the U.S.,” shares David Salvo, CEO of Power Electronics. “We start manufacturing EV chargers in Houston later this year and are committed to U.S. manufacturing job creation.”

The company saw a need for setting up a Texas manufacturing facility to support growth and was impressed by the volume of Houston talent possessing a deep understanding of both mechanical and electrical equipment from their tenure in upstream oil and gas.

“It is easier to find people here [like that] than anywhere else,” Salvo tells EnergyCapitalHTX. “That is a fact.”

Explosive growth for the region has barely even begun, with expected investments in Texas alone exceeding $60 billion dollars in large scale renewables.

“Because of these investments that we are making, we are able to create good paying jobs… and meet climate goals of getting to a Net Zero economy by 2050,” Jeff Marootian, U.S Department of Energy senior advisor, tells Katie Mehnert, CEO of Ally Energy and DOE Ambassador, during their fireside chat.

“Partnership between government and private sector, ultimately, is creating these opportunities,” Marootian says. “Our challenge is to help identify, help train, help build up that generation of workforce.”

As a final note on the trifecta of purpose, partnering, and governance, Erika Bierschbach, vice president of energy market operations and resource planning for Austin Energy, challenges the power and utilities industry to embrace statistical models over deterministic ones when forecasting energy supply and demand. The upstream oil and gas sector embraced this practice years ago to improve production optimization processes.

On the subject of green energy employment, a recent report found that Houston is a successful hub when it comes to clean energy jobs. SmartAsset, a personal finance website, recently ranked the Houston metro area as the fifth best place in the U.S. for green jobs, which pay an average of 21 percent more than other jobs. And actually, the study found that 2.23 percent of workers in the Houston area hold down jobs classified as “green.”

A Houston energy professional shares his advice for those looking for a job in climate tech. Photo via Getty Images

Houston expert shares 5 tips for people looking to expand their career into climate tech

GUEST COLUMN

If hard times build strong people, then extreme weather events build strong climate tech ecosystems. Nobody knows this conventional wisdom better than Houston.

The past six years alone have seen the second costliest natural disaster in United States history (Hurricane Harvey), the longest power outage in Texas history (Winter Storm Uri), and this June, a heat wave that pushed the ERCOT power grid to record levels.

Combine our ever more volatile climate with a post-COVID-19 reckoning of what it means to work for what you believe in, and you get a recipe for the most significant workforce shift the world has ever seen. This workforce shift rules in favor of climate tech, and it will largely target those who’ve grown up, come of age and started their careers in the midst of this increasing volatility. Climate tech will no longer be considered a standalone industry; it will be baked into all existing industries, and those that don’t accept it will die.

I’m proud to be a climate optimist, but I’m also a realist. The truth is no matter what we do, our volatile climate is going to get worse before it gets better. But if extreme weather events build strong climate tech ecosystems, I can live with that.

To students and young professionals considering a jump into climate tech: There is no better place to be right now. Here are five things to keep in mind as you make that jump.

1. Meet as many people from diverse backgrounds working on as many different things as you can. You will likely feel awkward at first, especially if you don’t naturally gravitate toward conferences and happy hours. At the risk of sounding trite, just treat every stranger like a friend you haven’t met yet. Some of us could probably use more friends anyway.

2. The advice in the self-help book How to Win Friends and Influence People, originally published in 1936, is timeless. Possibly the most useful (and most obvious) point is this: Remember that a person’s name is to that person the sweetest and most important sound in any language. Whenever possible, repeat your new friends’ names when you meet them. Especially if you’re seeking a business development, sales or other external-facing role, perfecting this point should be your Holy Grail.

3. Depending on how new you are to energy and climate tech, you’ll hear lots of unfamiliar lingo. Ask questions, take note of what you still don’t get, and do your best to fill in the gaps on the side. Eventually, acronyms will become your best friend. For example: Have you seen what the ITC and the PTC from the IRA will do to the LCOE of PV according to NREL? IYKYK.

4. Coachability is key. You may feel like you’re getting rejected 99 percent of the time, but the way you respond to and learn from those experiences will ensure the other one percent makes all the difference. At the end of the day, climate tech is so vast that it’s impossible to become an expert in everything, and that’s okay. We may not know what’s going on 70 percent of the time, but I’ll take a .300 batting average any day.

5. It may be impossible to become an expert in everything, but you should proactively learn as much as you can, especially given how quickly the ecosystem is expanding. If you’re not embarrassed by how little you knewone year ago, two years ago or even five years ago, then you’re probably not trying hard enough.

These are only five of my takeaways over the past few years and I’ll be the first to admit that I have a long way to go in implementing them. In a way, that’s what makes this journey what it is. I just can’t wait to see what we build.

---

Ryan Davidson is business development lead for CalWave Power Technologies, a California-based company and Greentown Houston member that's focused on converting ocean waves’ hydrokinetic energy into reliable electricity.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston-based co. closes acquisition of 50 percent stake in Texas cogeneration facility

M&A Moves

Fengate Asset Management announced the financial close on the acquisition of a 50 percent interest in Freeport Power Limited, which owns a 440-megawatt cogeneration facility in Freeport, Texas.

FPL is located near the Freeport Energy Center, which is a 260-megawatt cogeneration facility that is currently owned and managed by Fengate. The two facilities work to provide cost-effective power and steam to Dow’s Freeport site, which is the largest integrated chemical manufacturing complex in the Western Hemisphere.

“We are thrilled to have closed this acquisition, which aligns with our strategy of acquiring behind-the-meter cogeneration projects with strong industrial partners like Dow,” Greg Calhoun, managing director of Infrastructure Investments at Fengate, says in a news release.

Fengate was able to acquire interest in FPL under a strategic operating partnership with asset manager Ironclad Energy. The partnership with Ironclad was established in 2022 to acquire and operate cogeneration, district energy and other power generation projects throughout North America.

“This is our second acquisition with Fengate, and we look forward to continuing our partnership to optimize and expand the portfolio,” Christopher Fanella, president and CFO of Ironclad Energy, says in the release.

Fengate opened its first U.S. office in 2017 in Houston.

“Combined heat and power projects like FPL will continue to play an important role in the U.S. power industry – especially for hard-to-abate industrial sectors – to ensure reliability, efficiency and affordability,” adds in the release.

Houston energy leader on why the future of fuels is more than electric vehicles

guest column

Gasoline, diesel, bunker fuel, and jet fuel. Four liquid hydrocarbons that have been powering transportation for the last 100-plus years.

Gas stations, truck stops, ports, and airport fuel terminals have been built up over the last century to make transportation easy and reliable.

These conventional fuels release Greenhouse Gases (GHG) when they are used, and governments all over the world are working on plans to shift towards cleaner fuels in an effort to lower emissions and minimize the effects of climate change.

For passenger cars, it’s clear that electricity will be the cleaner fuel type, with most countries adopting electric vehicles (EVs), and in some cases, providing their citizens with incentives to make the switch.

While many articles have been written about EVs and the benefits that come along with them, they fail to look at the transportation system as a whole.

Trucks, cargo ships, and airplanes are modes of transportation that are used every day, but they don’t often get the spotlight like EVs do.

For governments to be effective in curbing transportation-related greenhouse emissions, they must consider all forms of transportation and cleaner fuel options for them as well.

43 percent of GHG emissions comes from these modes of transportation. Therefore, using electricity to reduce GHG emissions in light duty vehicles only accounts for part of the total transportation emissions equation.

The path to cleaner fuels for these transportation modes has its challenges.

According to Ed Emmett, Fellow in Energy and Transportation Policy at the Baker Institute Center for Energy Studies (CES);

  • "Airplanes cannot be realistically powered by electricity, at least not currently, and handle the same requisite freight and passenger loads"
  • "The long-haul trucking industry [...] pushed back against electrification as being impractical due to the size and weight of batteries, their limited range, and the cost of adoption"
  • "Shipowners have expressed reluctance to scrap existing bunker fueled ships for newer, more expensive ships, especially when other fueling options, e.g. biofuels and hydrocarbon derivatives-for fleets can be made available"

Finding low-cost, reliable, and environmentally sound fuels for the various segments of transportation is complex. As Emmett suggests in his latest article;

"Hovering over the transition to other fuels for almost every transportation mode is the question of dependability of supply. For the trucking industry, the truck stop industry must be able to adapt to new fuel requirements. For ocean shipping, ports must be able to meet the fuel needs of new ships. Airlines, air cargo carriers and airports need to be on the same page when it comes to aviation fuels. In other words, the adoption equation in transitions in transportation is not only a function of the availability and cost of the new technology but also a function of the cost of the full supply chain needed to support fuel production and delivery to the point of use. Going forward, the transportation industry is facing a dilemma: How are environmental concerns addressed while simultaneously maintaining operational efficiency and avoiding unnecessary upward cost shifts for moving goods and people? In answering that question, for the first time in history, modes of transportation may end up going in multiple different directions when it comes to the fuels each mode ultimately chooses."

This is why many forecasts predict that hydrocarbon demand will continue through 2050, despite ambitious aspirations of achieving net zero emissions by that year. The McKinsey "slow evolution" scenario has global liquid hydrocarbon demand in 2050 at 92mmb/d versus 103 mmb/d in 2023. With their "continued momentum" scenario, oil demand is 75 mmb/d. Proportionally, global oil demand related to GHG emissions from transportation would decline 11-27 percent. The global uptake of EVs is the primary driver of uncertainty around future oil demand. In all the McKinsey scenarios, the share of EVs in passenger cars sales is expected to be above 90 percent by 2050.

The Good News

Despite the relatively slow progress expected for reducing GHG emissions in the global transportation sector, there are solutions emerging that lower the carbon footprint tied to traditional petroleum-based fuels. Emmett highlights some of the methods under study, noting that "sustainable biofuels sourced from cooking oils, animal fats, and agriculture products, as well as hydrogen, methanol, ammonia, and various e-fuels are among the options being tested. Some ocean carriers are already ordering ships powered by liquified natural gas, bio-e-methanol, bio/e-methane, ammonia, and hydrogen. Airlines are already using sustainable aviation fuel as a supplement to basic aviation fuel. Railroads are testing hydrogen locomotives. The trucking industry is decarbonizing local delivery by using vehicles powered by electricity, compressed natural gas, and sustainable diesel. Long-haul trucking companies are considering sustainable diesel as a drop-in fuel for existing equipment, and fuel suppliers are researching new engines fueled by hydrogen and other alternative fuels."

Most of these options will require a combination of increased government incentives, along with advancements in technology and cost reductions.

McKinsey's "sustainable transformation" scenario, which considers potential shifts in government regulations as well as advancements in technology and cost, suggests there is moderate growth in alternative fuels alongside growth in EVs. Mckinsey projects;

  • EV demand could grow to over 90 percent of total passenger car sales by 2050
  • EVs to make up around 80 percent of commercial truck sales by 2050
  • In aviation, low carbon fuels such as biofuels, synfuels, hydrogen and electricity are projected to grow to 49 percent by 2050.

According to McKinsey, the combination of these alternatives along with demand changes in power and chemicals could reduce global oil demand to 60 mmb/d in 2050. The shift to cleaner fuels, for modes of transportation other than EVs, is underway but the progress and adoption will take decades to achieve according to McKinsey’s forecasts.

Looking more closely at EVs, the story may not be as dire globally as it seems to be in the West. While the U.S. appears to be losing momentum on electric vehicle adoption, China is roaring ahead. New electric car registrations in China reached 8.1 million in 2023, increasing by 35 percent relative to 2022. McKinsey’s forecasts have underestimated global EV sales in the past, with China surpassing their estimates, while the U.S. lags behind. It’s clear that China is the winner in EV adoption; could they also lead the way to adopt cleaner fuels for other modes of transport? That is something governments and the transportation industry will be watching in the years ahead.

Conclusion

While we are not on a trajectory to meet the aspirations to reduce global GHG emissions in the transportation sector, there are emerging solutions that could be adopted should governments around the world decide to put in place the incentives to get there. Moving forward, the future of transportation fuels will be shaped by a mix of innovation, government policies, and what consumers want. The focus will be on ensuring that the transportation sector remains reliable, secure, and economically robust, while also reducing GHG emissions. But, decarbonizing the transportation sector is much more than just EV's – it's a broader effort that will require continued global progress in each of the multiple transportation segments.

------------

Scott Nyquist is a senior advisor at McKinsey & Company and vice chairman, Houston Energy Transition Initiative of the Greater Houston Partnership. The views expressed herein are Nyquist's own and not those of McKinsey & Company or of the Greater Houston Partnership. This article originally ran on LinkedIn on October 9, 2024.

Houston company secures $10M contract to deliver subsea well decommissioning solution

big deal

Houston energy services provider Expro was awarded a contract valued at over $10 million for the provision of a well decommissioning solution.

The solution will combine subsea safety systems and surface processing design that can enable safe entry to the well and management of well fluids.

“The contract reinforces our reputation as the leading provider of subsea safety systems and surface well test equipment, including within the P&A sector,” Iain Farley, Expro’s regional vice president for Europe and Sub-Saharan Africa, says in a news release. "It demonstrates our commitment to delivering best-in-class equipment, allied with the highest standards of safety and service quality that Expro is renowned for.”

Expro will provide from its global support hub in Aberdeen, a surface fluid management package and a market-leading 7-3/8 inch large-bore subsea test tree assembly (SSTTA). This will include surface tree and controls that can provide dual barrier and disconnect capability to facilitate re-entry into the subsea wells.

Expro has been supplying its subsea safety systems and well test equipment to the construction of many of the 52 wells now being plugged and abandoned.

“Having been involved in the development phase for many of these fields, we have gained a life of well experience that will be invaluable for this P&A campaign,” Farley adds. “Our expertise and know-how will help deliver key technical and commercial benefits for the client across the project.”