Expert: Addressing skilled labor needs in Houston — including the role technology plays

Proactively engaging in advocating for opportunities within the industry across all job levels is essential to guaranteeing a consistent influx of skilled workers, meeting the growing construction demands of both our state and nation. Photo via Getty Images

The construction industry in the U.S. is experiencing a substantial demand for skilled workers. There are over 438,000 job openings, and this demand is projected to increase, aiming to attract over half a million workers to meet the upcoming labor needs.

The urgency is heightened as a significant percentage — more than 40 percent — of the existing workforce is expected to retire within the next eight years.

To top it off, Texas is the fastest growing state with more than nine million new residents between 2000 and 2022. With a growing population, the requirement for robust infrastructure, encompassing various sectors like transportation, health care, education, and residential development, continues to escalate. Encouraging careers in construction among the younger generation becomes vital for everyone, no matter their industry, to meet these demands and bridge the deepening skills gap.

Viable Career Path: Attracting the next wave of construction talent involves dispelling misconceptions about the industry. Many young individuals might not realize the breadth of opportunities available in construction beyond traditional manual labor. I personally gained interest and experience in the industry at a young age before navigating through a few IT careers, and then landed back in construction and worked my way up, which exemplifies the diverse career paths within the industry.

Education and training play a pivotal role in molding the future workforce. Highlighting that formal education isn't the sole path to success, apprenticeships and on-the-job training programs emerge as excellent alternatives, providing hands-on learning experiences while earning a wage. Collaborating with educational institutions and organizations at an early stage can introduce students to the industry's diverse career avenues.

As with every industry, diversity encourages innovation. Business leaders who intentionally recruit from underrepresented groups, including women and minorities, within the industry will reap countless benefits.

Innovative Technologies: Showcasing the innovative and technological aspects of the industry, such as precision tools, drone technology, AI, and virtual reality, underscores the creative and forward-thinking nature of construction careers. The construction industry continues to evolve and become technologically advanced. The need for cutting-edge individuals who possess construction skills with an understanding of technical innovations will transform the industry.

Stability: Highlighting the industry’s stability, competitive compensation, and the promising opportunities for career growth can further attract potential candidates. Advocating for stringent safety measures and emphasizing the importance of sustainable building practices introduces an added layer of social responsibility, capturing the attention of those committed to ensuring a secure work environment.

Ultimately, the collective efforts of the current workforce and today’s business leaders are pivotal in addressing the imminent skills gap that stands to affect us all. Proactively engaging in advocating for opportunities within the industry across all job levels is essential to guaranteeing a consistent influx of skilled workers, meeting the growing construction demands of both our state and nation.

———

Randy Pitre serves as the vice president of operations for Skanska USA Building’s North Texas and Houston building operations.

This article originally ran on InnovationMap.

Trending News

A View From HETI

Researchers from Rice University say their recent findings could revolutionize power grids, making energy transmission more efficient. Image via Getty Images.

A new study from researchers at Rice University, published in Nature Communications, could lead to future advances in superconductors with the potential to transform energy use.

The study revealed that electrons in strange metals, which exhibit unusual resistance to electricity and behave strangely at low temperatures, become more entangled at a specific tipping point, shedding new light on these materials.

A team led by Rice’s Qimiao Si, the Harry C. and Olga K. Wiess Professor of Physics and Astronomy, used quantum Fisher information (QFI), a concept from quantum metrology, to measure how electron interactions evolve under extreme conditions. The research team also included Rice’s Yuan Fang, Yiming Wang, Mounica Mahankali and Lei Chen along with Haoyu Hu of the Donostia International Physics Center and Silke Paschen of the Vienna University of Technology. Their work showed that the quantum phenomenon of electron entanglement peaks at a quantum critical point, which is the transition between two states of matter.

“Our findings reveal that strange metals exhibit a unique entanglement pattern, which offers a new lens to understand their exotic behavior,” Si said in a news release. “By leveraging quantum information theory, we are uncovering deep quantum correlations that were previously inaccessible.”

The researchers examined a theoretical framework known as the Kondo lattice, which explains how magnetic moments interact with surrounding electrons. At a critical transition point, these interactions intensify to the extent that the quasiparticles—key to understanding electrical behavior—disappear. Using QFI, the team traced this loss of quasiparticles to the growing entanglement of electron spins, which peaks precisely at the quantum critical point.

In terms of future use, the materials share a close connection with high-temperature superconductors, which have the potential to transmit electricity without energy loss, according to the researchers. By unblocking their properties, researchers believe this could revolutionize power grids and make energy transmission more efficient.

The team also found that quantum information tools can be applied to other “exotic materials” and quantum technologies.

“By integrating quantum information science with condensed matter physics, we are pivoting in a new direction in materials research,” Si said in the release.

Trending News