Preventing heat stress and illness relies heavily on preparedness, education, communication, flexibility, and hydration. Photo via Getty Images

Summer and fall in Houston are full of daily high-temperature records. In 2023, over 2,300 heat-related deaths occurred within the US, and with forecasts predicting even higher temperatures throughout the rest of the summer, the concern for heat-wave-related illness should be top of mind.

Construction workers, for example, are 13 percent more likely than those in the general population to suffer fatalities caused by heat-related illnesses. As the summer heat continues, safety must be a top priority for anyone working outdoors.

Prioritizing worker safety is paramount in our area where we experience an extended summer. The following tips will help business leaders and managers prioritize the health and well-being of workers.

Education

Developing a plan is the first step in creating a culture that prioritizes heat safety. To mitigate employee risk, regular education throughout the year should occur to help workers identify the signs of heat illness. In especially hot months, regular communication and monitoring throughout the day is paramount.

Environmental monitoring tools like the OSHA-NIOSH heat safety app should be a part of heat safety plans. The app helps leaders monitor temperature, humidity, and heat index on individual job sites. Additionally, wearable monitors that track vitals like heart rate can be invaluable for identifying signs of heat illness. However, these tools require thorough education to ensure effective use.

Flex Schedules

Working early in the day is an important and popular strategy in the summer months. It is impossible to avoid the heat completely, so providing cool areas, such as cool job site trailers for resting at breaks or meals can help keep employees from overheating. Additionally, Portacool units effectively cool the surrounding area by up to 30 degrees. These mobile devices can be used both indoors and outdoors, working by pulling hot air through a medium that causes water to evaporate. A fan then disperses the cooler air, creating a more comfortable environment for workers.

Heat acclimatization is crucial, especially for new outdoor crew members. Safety professionals should gradually increase their exposure to the elements to keep them healthy. It's also important to ease workers back into increased heat exposure after an extended absence.

Hydration

Proper hydration is essential for heat safety. Employees should be encouraged to take water breaks and drink electrolytes, with supervisors regularly reminding them to do so. Items like electrolyte ice pops can help maintain a healthy workforce on especially hot days. Body cool stations equipped with cold drinks, ice coolers, and cooling towels can effectively cool the body from the inside out. Offering various ways for employees to stay hydrated and cool demonstrates the organization’s commitment to worker well-being.

Heat safety is a critical concern. Preventing heat stress and illness relies heavily on preparedness, education, communication, flexibility, and hydration. Businesses employing outdoor workers must be aware of the dangers posed by heat and humidity, and the importance of recognizing signs of heat stress. Prioritizing heat safety ensures a safe summer and fall in Houston's challenging climate.

———

Reggie Asare is director of environmental health and safety at Skanska USA Building in Houston. Skanska is one of the world's leading project development and construction groups.
Proactively engaging in advocating for opportunities within the industry across all job levels is essential to guaranteeing a consistent influx of skilled workers, meeting the growing construction demands of both our state and nation. Photo via Getty Images

Expert: Addressing skilled labor needs in Houston — including the role technology plays

The construction industry in the U.S. is experiencing a substantial demand for skilled workers. There are over 438,000 job openings, and this demand is projected to increase, aiming to attract over half a million workers to meet the upcoming labor needs.

The urgency is heightened as a significant percentage — more than 40 percent — of the existing workforce is expected to retire within the next eight years.

To top it off, Texas is the fastest growing state with more than nine million new residents between 2000 and 2022. With a growing population, the requirement for robust infrastructure, encompassing various sectors like transportation, health care, education, and residential development, continues to escalate. Encouraging careers in construction among the younger generation becomes vital for everyone, no matter their industry, to meet these demands and bridge the deepening skills gap.

Viable Career Path: Attracting the next wave of construction talent involves dispelling misconceptions about the industry. Many young individuals might not realize the breadth of opportunities available in construction beyond traditional manual labor. I personally gained interest and experience in the industry at a young age before navigating through a few IT careers, and then landed back in construction and worked my way up, which exemplifies the diverse career paths within the industry.

Education and training play a pivotal role in molding the future workforce. Highlighting that formal education isn't the sole path to success, apprenticeships and on-the-job training programs emerge as excellent alternatives, providing hands-on learning experiences while earning a wage. Collaborating with educational institutions and organizations at an early stage can introduce students to the industry's diverse career avenues.

As with every industry, diversity encourages innovation. Business leaders who intentionally recruit from underrepresented groups, including women and minorities, within the industry will reap countless benefits.

Innovative Technologies: Showcasing the innovative and technological aspects of the industry, such as precision tools, drone technology, AI, and virtual reality, underscores the creative and forward-thinking nature of construction careers. The construction industry continues to evolve and become technologically advanced. The need for cutting-edge individuals who possess construction skills with an understanding of technical innovations will transform the industry.

Stability: Highlighting the industry’s stability, competitive compensation, and the promising opportunities for career growth can further attract potential candidates. Advocating for stringent safety measures and emphasizing the importance of sustainable building practices introduces an added layer of social responsibility, capturing the attention of those committed to ensuring a secure work environment.

Ultimately, the collective efforts of the current workforce and today’s business leaders are pivotal in addressing the imminent skills gap that stands to affect us all. Proactively engaging in advocating for opportunities within the industry across all job levels is essential to guaranteeing a consistent influx of skilled workers, meeting the growing construction demands of both our state and nation.

———

Randy Pitre serves as the vice president of operations for Skanska USA Building’s North Texas and Houston building operations.

This article originally ran on InnovationMap.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Spring-based private equity firm acquires West Texas wind farm

power deal

Spring-based private equity firm Arroyo Investors has teamed up with ONCEnergy, a Portland, Oregon-based developer of clean energy projects, to buy a 60-megawatt wind farm southeast of Amarillo.

Skyline Renewables, which acquired the site, known as the Whirlwind Energy Center, in 2018, was the seller. The purchase price wasn’t disclosed.

Whirlwind Energy Center, located in Floyd County, West Texas, comprises 26 utility-scale wind turbines. The wind farm, built in 2007, supplies power to Austin Energy.

“The acquisition reflects our focus on value-driven investments with strong counterparties, a solid operating track record, and clear relevance to markets with growing capacity needs,” Brandon Wax, a partner at Arroyo, said in a press release. “Partnering with ONCEnergy allows us to leverage deep operational expertise while expanding our investment footprint in the market.”

Arroyo focuses on energy infrastructure investments in the Americas. Its portfolio includes Spring-based Seaside LNG, which produces liquefied natural gas and LNG transportation services.

Last year, Arroyo closed an investment fund with more than $1 billion in total equity commitments.

Since its launch in 2003, Arroyo has “remained committed to investing in high-quality assets, creating value and positioning assets for exit within our expected hold period,” founding partner Chuck Jordan said in 2022.

$524M Texas Hill Country solar project powered by Hyundai kicks off

powering up

Corporate partners—including Hyundai Engineering & Construction, which maintains a Houston office—kicked off a $524 million solar power project in the Texas Hill Country on Jan. 27.

The 350-megawatt, utility-scale Lucy Solar Project is scheduled to go online in mid-2027 and represents one of the largest South Korean-led investments in U.S. renewable energy.

The solar farm, located on nearly 2,900 acres of ranchland in Concho County, will generate 926 gigawatt-hours of solar power each year. That’s enough solar power to supply electricity to roughly 65,000 homes in Texas.

Power to be produced by the hundreds of thousands of the project’s solar panels has already been sold through long-term deals to buyers such as Starbucks, Workday and Plano-based Toyota Motor North America.

The project is Hyundai Engineering & Construction’s largest solar power initiative outside Asia.

“The project is significant because it’s the first time Hyundai E&C has moved beyond its traditional focus on overseas government contracts to solidify its position in the global project financing market,” the company, which is supplying solar modules for the project, says on its website.

Aside from Hyundai Engineering & Construction, a subsidiary of automaker Hyundai, Korean and U.S. partners in the solar project include Korea Midland Power, the Korea Overseas Infrastructure & Urban Development Corp., solar panel manufacturer Topsun, investment firm EIP Asset Management, Primoris Renewable Energy and High Road Energy Marketing.

Primoris Renewable Energy is an Aurora, Colorado-based subsidiary of Dallas-based Primoris Services Corp. Another subsidiary, Primoris Energy Services, is based in Houston.

High Road is based in the Austin suburb of West Lake Hills.

“The Lucy Solar Project shows how international collaboration can deliver local economic development and clean power for Texas communities and businesses,” says a press release from the project’s partners.

Elon Musk vows to put data centers in space and run them on solar power

Outer Space

Elon Musk vowed this week to upend another industry just as he did with cars and rockets — and once again he's taking on long odds.

The world's richest man said he wants to put as many as a million satellites into orbit to form vast, solar-powered data centers in space — a move to allow expanded use of artificial intelligence and chatbots without triggering blackouts and sending utility bills soaring.

To finance that effort, Musk combined SpaceX with his AI business on Monday, February 2, and plans a big initial public offering of the combined company.

“Space-based AI is obviously the only way to scale,” Musk wrote on SpaceX’s website, adding about his solar ambitions, “It’s always sunny in space!”

But scientists and industry experts say even Musk — who outsmarted Detroit to turn Tesla into the world’s most valuable automaker — faces formidable technical, financial and environmental obstacles.

Feeling the heat

Capturing the sun’s energy from space to run chatbots and other AI tools would ease pressure on power grids and cut demand for sprawling computing warehouses that are consuming farms and forests and vast amounts of water to cool.

But space presents its own set of problems.

Data centers generate enormous heat. Space seems to offer a solution because it is cold. But it is also a vacuum, trapping heat inside objects in the same way that a Thermos keeps coffee hot using double walls with no air between them.

“An uncooled computer chip in space would overheat and melt much faster than one on Earth,” said Josep Jornet, a computer and electrical engineering professor at Northeastern University.

One fix is to build giant radiator panels that glow in infrared light to push the heat “out into the dark void,” says Jornet, noting that the technology has worked on a small scale, including on the International Space Station. But for Musk's data centers, he says, it would require an array of “massive, fragile structures that have never been built before.”

Floating debris

Then there is space junk.

A single malfunctioning satellite breaking down or losing orbit could trigger a cascade of collisions, potentially disrupting emergency communications, weather forecasting and other services.

Musk noted in a recent regulatory filing that he has had only one “low-velocity debris generating event" in seven years running Starlink, his satellite communications network. Starlink has operated about 10,000 satellites — but that's a fraction of the million or so he now plans to put in space.

“We could reach a tipping point where the chance of collision is going to be too great," said University at Buffalo's John Crassidis, a former NASA engineer. “And these objects are going fast -- 17,500 miles per hour. There could be very violent collisions."

No repair crews

Even without collisions, satellites fail, chips degrade, parts break.

Special GPU graphics chips used by AI companies, for instance, can become damaged and need to be replaced.

“On Earth, what you would do is send someone down to the data center," said Baiju Bhatt, CEO of Aetherflux, a space-based solar energy company. "You replace the server, you replace the GPU, you’d do some surgery on that thing and you’d slide it back in.”

But no such repair crew exists in orbit, and those GPUs in space could get damaged due to their exposure to high-energy particles from the sun.

Bhatt says one workaround is to overprovision the satellite with extra chips to replace the ones that fail. But that’s an expensive proposition given they are likely to cost tens of thousands of dollars each, and current Starlink satellites only have a lifespan of about five years.

Competition — and leverage

Musk is not alone trying to solve these problems.

A company in Redmond, Washington, called Starcloud, launched a satellite in November carrying a single Nvidia-made AI computer chip to test out how it would fare in space. Google is exploring orbital data centers in a venture it calls Project Suncatcher. And Jeff Bezos’ Blue Origin announced plans in January for a constellation of more than 5,000 satellites to start launching late next year, though its focus has been more on communications than AI.

Still, Musk has an edge: He's got rockets.

Starcloud had to use one of his Falcon rockets to put its chip in space last year. Aetherflux plans to send a set of chips it calls a Galactic Brain to space on a SpaceX rocket later this year. And Google may also need to turn to Musk to get its first two planned prototype satellites off the ground by early next year.

Pierre Lionnet, a research director at the trade association Eurospace, says Musk routinely charges rivals far more than he charges himself —- as much as $20,000 per kilo of payload versus $2,000 internally.

He said Musk’s announcements this week signal that he plans to use that advantage to win this new space race.

“When he says we are going to put these data centers in space, it’s a way of telling the others we will keep these low launch costs for myself,” said Lionnet. “It’s a kind of powerplay.”