Preventing heat stress and illness relies heavily on preparedness, education, communication, flexibility, and hydration. Photo via Getty Images

Summer and fall in Houston are full of daily high-temperature records. In 2023, over 2,300 heat-related deaths occurred within the US, and with forecasts predicting even higher temperatures throughout the rest of the summer, the concern for heat-wave-related illness should be top of mind.

Construction workers, for example, are 13 percent more likely than those in the general population to suffer fatalities caused by heat-related illnesses. As the summer heat continues, safety must be a top priority for anyone working outdoors.

Prioritizing worker safety is paramount in our area where we experience an extended summer. The following tips will help business leaders and managers prioritize the health and well-being of workers.

Education

Developing a plan is the first step in creating a culture that prioritizes heat safety. To mitigate employee risk, regular education throughout the year should occur to help workers identify the signs of heat illness. In especially hot months, regular communication and monitoring throughout the day is paramount.

Environmental monitoring tools like the OSHA-NIOSH heat safety app should be a part of heat safety plans. The app helps leaders monitor temperature, humidity, and heat index on individual job sites. Additionally, wearable monitors that track vitals like heart rate can be invaluable for identifying signs of heat illness. However, these tools require thorough education to ensure effective use.

Flex Schedules

Working early in the day is an important and popular strategy in the summer months. It is impossible to avoid the heat completely, so providing cool areas, such as cool job site trailers for resting at breaks or meals can help keep employees from overheating. Additionally, Portacool units effectively cool the surrounding area by up to 30 degrees. These mobile devices can be used both indoors and outdoors, working by pulling hot air through a medium that causes water to evaporate. A fan then disperses the cooler air, creating a more comfortable environment for workers.

Heat acclimatization is crucial, especially for new outdoor crew members. Safety professionals should gradually increase their exposure to the elements to keep them healthy. It's also important to ease workers back into increased heat exposure after an extended absence.

Hydration

Proper hydration is essential for heat safety. Employees should be encouraged to take water breaks and drink electrolytes, with supervisors regularly reminding them to do so. Items like electrolyte ice pops can help maintain a healthy workforce on especially hot days. Body cool stations equipped with cold drinks, ice coolers, and cooling towels can effectively cool the body from the inside out. Offering various ways for employees to stay hydrated and cool demonstrates the organization’s commitment to worker well-being.

Heat safety is a critical concern. Preventing heat stress and illness relies heavily on preparedness, education, communication, flexibility, and hydration. Businesses employing outdoor workers must be aware of the dangers posed by heat and humidity, and the importance of recognizing signs of heat stress. Prioritizing heat safety ensures a safe summer and fall in Houston's challenging climate.

———

Reggie Asare is director of environmental health and safety at Skanska USA Building in Houston. Skanska is one of the world's leading project development and construction groups.
Proactively engaging in advocating for opportunities within the industry across all job levels is essential to guaranteeing a consistent influx of skilled workers, meeting the growing construction demands of both our state and nation. Photo via Getty Images

Expert: Addressing skilled labor needs in Houston — including the role technology plays

The construction industry in the U.S. is experiencing a substantial demand for skilled workers. There are over 438,000 job openings, and this demand is projected to increase, aiming to attract over half a million workers to meet the upcoming labor needs.

The urgency is heightened as a significant percentage — more than 40 percent — of the existing workforce is expected to retire within the next eight years.

To top it off, Texas is the fastest growing state with more than nine million new residents between 2000 and 2022. With a growing population, the requirement for robust infrastructure, encompassing various sectors like transportation, health care, education, and residential development, continues to escalate. Encouraging careers in construction among the younger generation becomes vital for everyone, no matter their industry, to meet these demands and bridge the deepening skills gap.

Viable Career Path: Attracting the next wave of construction talent involves dispelling misconceptions about the industry. Many young individuals might not realize the breadth of opportunities available in construction beyond traditional manual labor. I personally gained interest and experience in the industry at a young age before navigating through a few IT careers, and then landed back in construction and worked my way up, which exemplifies the diverse career paths within the industry.

Education and training play a pivotal role in molding the future workforce. Highlighting that formal education isn't the sole path to success, apprenticeships and on-the-job training programs emerge as excellent alternatives, providing hands-on learning experiences while earning a wage. Collaborating with educational institutions and organizations at an early stage can introduce students to the industry's diverse career avenues.

As with every industry, diversity encourages innovation. Business leaders who intentionally recruit from underrepresented groups, including women and minorities, within the industry will reap countless benefits.

Innovative Technologies: Showcasing the innovative and technological aspects of the industry, such as precision tools, drone technology, AI, and virtual reality, underscores the creative and forward-thinking nature of construction careers. The construction industry continues to evolve and become technologically advanced. The need for cutting-edge individuals who possess construction skills with an understanding of technical innovations will transform the industry.

Stability: Highlighting the industry’s stability, competitive compensation, and the promising opportunities for career growth can further attract potential candidates. Advocating for stringent safety measures and emphasizing the importance of sustainable building practices introduces an added layer of social responsibility, capturing the attention of those committed to ensuring a secure work environment.

Ultimately, the collective efforts of the current workforce and today’s business leaders are pivotal in addressing the imminent skills gap that stands to affect us all. Proactively engaging in advocating for opportunities within the industry across all job levels is essential to guaranteeing a consistent influx of skilled workers, meeting the growing construction demands of both our state and nation.

———

Randy Pitre serves as the vice president of operations for Skanska USA Building’s North Texas and Houston building operations.

This article originally ran on InnovationMap.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

What EPA’s carbon capture and storage permitting announcement means for Texas

The View From HETI

Earlier this month, Texas was granted authority by the federal government for permitting carbon capture and storage (CCS) projects. This move could help the U.S. cut emissions while staying competitive in the global energy game.

In June, the U.S. Environmental Protection Agency (EPA) proposed approving Texas’ request for permitting authority under the Safe Drinking Water Act (SDWA) for Class VI underground injection wells for carbon capture and storage (CCS) in the state under a process called “primacy.” The State of Texas already has permitting authority for other injection wells (Classes I-V). In November, the EPA announced final approval of Texas’ primacy request.

Why This Matters for Texas

Texas is the headquarters for virtually every segment of the energy industry. According to the U.S. Energy Information Administration, Texas is the top crude oil- and natural-gas producing state in the nation. The state has more crude oil refineries and refining capacity than any other state in the nation. Texas produces more electricity than any other state, and the demand for electricity will grow with the development of data centers and artificial intelligence (AI). Simply put, Texas is the backbone of the nation’s energy security and competitiveness. For the nation’s economic competitiveness, it is important that Texas continue to produce more energy with less emissions. CCS is widely regarded as necessary to continue to lower the emissions intensity of the U.S. industrial sector for critical products including power generation, refining, chemicals, steel, cement and other products that our country and world demand.

The Greater Houston Partnership’s Houston Energy Transition Initiative (HETI) has supported efforts to bring CCUS to a broader commercial scale since the initiative’s inception.

“Texas is uniquely positioned to deploy CCUS at scale, with world-class geology, a skilled workforce, and strong infrastructure. We applaud the EPA for granting Texas the authority to permit wells for CCUS, which we believe will result in safe and efficient permitting while advancing technologies that strengthen Texas’ leadership in the global energy market,” said Jane Stricker, Executive Director of HETI and Senior Vice President, Energy Transition at the Greater Houston Partnership.

What is Primacy, and Why is it Important?

Primacy grants permitting authority for Class VI wells for CCS to the Texas Railroad Commission instead of the EPA. Texas is required to follow the same strict standards the EPA uses. The EPA has reviewed Texas’ application and determined it meets those requirements.

Research suggests that Texas has strong geological formations for CO2 storage, a world-class, highly skilled workforce, and robust infrastructure primed for the deployment of CCS. However, federal permitting delays are stalling billions of dollars of private sector investment. There are currently 257 applications under review, nearly one-quarter of which are located in Texas, with some applications surpassing the EPA’s target review period of 24 months. This creates uncertainty for developers and investors and keeps thousands of potential jobs out of reach. By transferring permitting to the state, Texas will apply local resources to issue Class VI permits across the states in a timely manner.

Texas joins North Dakota, Wyoming, Louisiana, West Virginia and Arizona with the authority for regulating Class VI wells.

Is CCS safe?

A 2025 study by Texas A&M University reviewed operational history and academic literature on CCS in the United States. The study analyzed common concerns related to CCS efficacy and safety and found that CCS reduces pollutants including carbon dioxide, particulate matter, sulfur oxides and nitrogen oxides. The research found that the risks of CCS present a low probability of impacting human life and can be effectively managed through existing state and federal regulations and technical monitoring and safety protocols.

What’s Next?

The final rule granting Texas’ primacy will become effective 30 days after publication in the Federal Register. Once in effect, the Texas Railroad Commission will be responsible for permitting wells for carbon capture, use and storage and enforcing their safe operation.

———

This article originally ran on the Greater Houston Partnership's Houston Energy Transition Initiative blog. HETI exists to support Houston's future as an energy leader. For more information about the Houston Energy Transition Initiative, EnergyCapitalHTX's presenting sponsor, visit htxenergytransition.org.

Houston energy expert: How the U.S. can turn carbon into growth

Guets Column

For the past 40 years, climate policy has often felt like two steps forward, one step back. Regulations shift with politics, incentives get diluted, and long-term aspirations like net-zero by 2050 seem increasingly out of reach. Yet greenhouse gases continue to rise, and the challenges they pose are not going away.

This matters because the costs are real. Extreme weather is already straining U.S. power grids, damaging homes, and disrupting supply chains. Communities are spending more on recovery while businesses face rising risks to operations and assets. So, how can the U.S. prepare and respond?

The Baker Institute Center for Energy Studies (CES) points to two complementary strategies. First, invest in large-scale public adaptation to protect communities and infrastructure. Second, reframe carbon as a resource, not just a waste stream to be reduced.

Why Focusing on Emissions Alone Falls Short

Peter Hartley argues that decades of global efforts to curb emissions have done little to slow the rise of CO₂. International cooperation is difficult, the costs are felt immediately, and the technologies needed are often expensive. Emissions reduction has been the central policy tool for decades, and it has been neither sufficient nor effective.

One practical response is adaptation, which means preparing for climate impacts we can’t avoid. Some of these measures are private, taken by households or businesses to reduce their own risks, such as farmers shifting crop types, property owners installing fire-resistant materials, or families improving insulation. Others are public goods that require policy action. These include building stronger levees and flood defenses, reinforcing power grids, upgrading water systems, revising building codes, and planning for wildfire risks. Such efforts protect people today while reducing long-term costs, and they work regardless of the source of extreme weather. Adaptation also does not depend on global consensus; each country, state, or city can act in its own interest. Many of these measures even deliver benefits beyond weather resilience, such as stronger infrastructure and improved security against broader threats.

McKinsey research reinforces this logic. Without a rapid scale-up of climate adaptation, the U.S. will face serious socioeconomic risks. These include damage to infrastructure and property from storms, floods, and heat waves, as well as greater stress on vulnerable populations and disrupted supply chains.

Making Carbon Work for Us

While adaptation addresses immediate risks, Ken Medlock points to a longer-term opportunity: turning carbon into value.

Carbon can serve as a building block for advanced materials in construction, transportation, power transmission, and agriculture. Biochar to improve soils, carbon composites for stronger and lighter products, and next-generation fuels are all examples. As Ken points out, carbon-to-value strategies can extend into construction and infrastructure. Beyond creating new markets, carbon conversion could deliver lighter and more resilient materials, helping the U.S. build infrastructure that is stronger, longer-lasting, and better able to withstand climate stress.

A carbon-to-value economy can help the U.S. strengthen its manufacturing base and position itself as a global supplier of advanced materials.

These solutions are not yet economic at scale, but smart policies can change that. Expanding the 45Q tax credit to cover carbon use in materials, funding research at DOE labs and universities, and supporting early markets would help create the conditions for growth.

Conclusion

Instead of choosing between “doing nothing” and “net zero at any cost,” we need a third approach that invests in both climate resilience and carbon conversion.

Public adaptation strengthens and improves the infrastructure we rely on every day, including levees, power grids, water systems, and building standards that protect communities from climate shocks. Carbon-to-value strategies can complement these efforts by creating lighter, more resilient carbon-based infrastructure.

CES suggests this combination is a pragmatic way forward. As Peter emphasizes, adaptation works because it is in each nation’s self-interest. And as Ken reminds us, “The U.S. has a comparative advantage in carbon. Leveraging it to its fullest extent puts the U.S. in a position of strength now and well into the future.”

-----------

Scott Nyquist is a senior advisor at McKinsey & Company and vice chairman, Houston Energy Transition Initiative of the Greater Houston Partnership. The views expressed herein are Nyquist's own and not those of McKinsey & Company or of the Greater Houston Partnership. This article originally appeared on LinkedIn.

UH launches new series on AI’s impact on the energy sector

where to be

The University of Houston's Energy Transition Institute has launched a new Energy in Action Seminar Series that will feature talks focused on the intersection of the energy industry and digitization trends, such as AI.

The first event in the series took place earlier this month, featuring Raiford Smith, global market lead for power & energy for Google Cloud, who presented "AI, Energy, and Data Centers." The talk discussed the benefits of widespread AI adoption for growth in traditional and low-carbon energy resources.

Future events include:

“Through this timely and informative seminar series, ETI will bring together energy professionals, researchers, students, and anyone working in or around digital innovation in energy," Debalina Sengupta, chief operating officer of ETI, said in a news release. "We encourage industry members and students to register now and reap the benefits of participating in both the seminar and the reception, which presents a fantastic opportunity to stay ahead of industry developments and build a strong network in the Greater Houston energy ecosystem.”

The series is slated to continue throughout 2026. Each presentation is followed by a one-hour networking reception. Register for the next event here.