guest column

Expert weighs in on fire protection standards in hydrogen industry growth

With the projected uptick of new hydrogen production projects, an expert explores hydrogen fire protection, reflects on the measures and standards established to mitigate risks, and more. Photo courtesy

As First State Hydrogen continues to advance its groundbreaking clean hydrogen production facility in the U.S., the spotlight intensifies as hydrogen becomes an increasingly key player in the energy transition.

With the projected uptick of new hydrogen production and handling projects, let's explore hydrogen fire protection, reflect on the measures and standards established to mitigate risks, and ensure that the hydrogen economy thrives.

The challenges of hydrogen fire protection

As the hydrogen industry experiences a boom, the issue of fire protection emerges as a critical concern. It's important to note that hydrogen fires can pose a significantly higher risk than traditional fuel fires, burning hotter and more rapidly due to their higher outflow rates. The diverse range of storage and transport options, from cryogenic liquids to high-pressure cylinders, further complicates safety measures. This underscores the industry's urgent need to prioritize risk mitigation for common hydrogen applications, such as high-pressure cylinders used in fuel-cell vehicles and data centers, to ensure safety as this energy source scales up.

Hydrogen jet fire test results

The author's company, a global leader in paint and coatings, recently tested an industry leading, flexible epoxy intumescent passive fire protection (PFP) coating to evaluate the material response against high pressure hydrogen jet fires to determine if current ISO jet fire standards are adequate for the challenges hydrogen poses. Collaborating with the United Kingdom's Health and Safety Authority, they conducted hydrogen jet fire tests at a specialized facility. The team replicated conditions of high-pressure hydrogen leaks and their effects on steel and protective coatings. The initial tests revealed unprotected steel reaching critical temperatures rapidly under hydrogen fires. The steel coated with advanced PFP coatings proved highly effective. The PFP coatings help keep steel well below critical temperatures throughout the exposure, indicating their potential to protect against structural failures during hydrogen fires.

These initial tests can contribute to setting standards for hydrogen fire protection. The results offer safety experts critical data for better protecting industrial environments against high-pressure hydrogen jet fires.

A call for a fire protection standard

The hydrogen industry currently relies on oil and gas regulations for specialized fire protection. While safety experts actively debate whether these standards can be adapted or whether entirely new criteria are necessary, industry collaboration remains key. Paint and coating companies, international standard organizations, safety groups, and energy regulators are all actively involved in assessing the adaptability of existing standards for hydrogen fires. The initial tests show promising results, suggesting that current oil and gas fire protection measures might be adapted for hydrogen fire protection, potentially leading to standards for the growing hydrogen industry.

Developing fire protection standards for the hydrogen industry remains a collective industry responsibility. Safety engineers, industry specialists, non-government officials (NGO), and policymakers must work together to ensure the hydrogen industry advances safely and responsibly. The paint and coatings industry, in particular, will play a crucial role in creating these standards. Leveraging their expertise in protective coatings, they can meet hydrogen's unique needs, from anti-corrosion to chemical resistance and passive fire protection.

———

Stuart Bradbury is the PPG business development manager of Fire Protection, Protective and Marine Coatings.

Trending News

A View From HETI

A new joint venture will work on four projects supplying 5 gigawatts of power from combined-cycle power plants for the ERCOT and PJM Interconnection grids. Photo via Getty Images.

Houston-based power provider NRG Energy Inc. has formed a joint venture with two other companies to meet escalating demand for electricity to fuel the rise of data centers and the evolution of generative AI.

NRG’s partners in the joint venture are GE Vernova, a provider of renewable energy equipment and services, and TIC – The Industrial Co., a subsidiary of construction and engineering company Kiewit.

“The growing demand for electricity in part due to GenAI and the buildup of data centers means we need to form new, innovative partnerships to quickly increase America’s dispatchable generation,” Robert Gaudette, head of NRG Business and Wholesale Operations, said in a news release. “Working together, these three industry leaders are committed to executing with speed and excellence to meet our customers’ generation needs.”

Initially, the joint venture will work on four projects supplying 5 gigawatts of power from combined-cycle power plants, which uses a combination of natural gas and steam turbines that produce additional electricity from natural gas waste. Electricity from these projects will be produced for power grids operated by the Electric Reliability Council of Texas (ERCOT) and PJM Interconnection. The projects are scheduled to come online from 2029 through 2032.

The joint venture says the model it’s developing for these four projects is “replicable and scalable,” with the potential for expansion across the U.S.

The company is also developing a new 721-megawatt natural gas combined-cycle unit at its Cedar Bayou plant in Baytown, Texas. Read more here.

Trending News