With the projected uptick of new hydrogen production projects, an expert explores hydrogen fire protection, reflects on the measures and standards established to mitigate risks, and more. Photo courtesy

As First State Hydrogen continues to advance its groundbreaking clean hydrogen production facility in the U.S., the spotlight intensifies as hydrogen becomes an increasingly key player in the energy transition.

With the projected uptick of new hydrogen production and handling projects, let's explore hydrogen fire protection, reflect on the measures and standards established to mitigate risks, and ensure that the hydrogen economy thrives.

The challenges of hydrogen fire protection

As the hydrogen industry experiences a boom, the issue of fire protection emerges as a critical concern. It's important to note that hydrogen fires can pose a significantly higher risk than traditional fuel fires, burning hotter and more rapidly due to their higher outflow rates. The diverse range of storage and transport options, from cryogenic liquids to high-pressure cylinders, further complicates safety measures. This underscores the industry's urgent need to prioritize risk mitigation for common hydrogen applications, such as high-pressure cylinders used in fuel-cell vehicles and data centers, to ensure safety as this energy source scales up.

Hydrogen jet fire test results

The author's company, a global leader in paint and coatings, recently tested an industry leading, flexible epoxy intumescent passive fire protection (PFP) coating to evaluate the material response against high pressure hydrogen jet fires to determine if current ISO jet fire standards are adequate for the challenges hydrogen poses. Collaborating with the United Kingdom's Health and Safety Authority, they conducted hydrogen jet fire tests at a specialized facility. The team replicated conditions of high-pressure hydrogen leaks and their effects on steel and protective coatings. The initial tests revealed unprotected steel reaching critical temperatures rapidly under hydrogen fires. The steel coated with advanced PFP coatings proved highly effective. The PFP coatings help keep steel well below critical temperatures throughout the exposure, indicating their potential to protect against structural failures during hydrogen fires.

These initial tests can contribute to setting standards for hydrogen fire protection. The results offer safety experts critical data for better protecting industrial environments against high-pressure hydrogen jet fires.

A call for a fire protection standard

The hydrogen industry currently relies on oil and gas regulations for specialized fire protection. While safety experts actively debate whether these standards can be adapted or whether entirely new criteria are necessary, industry collaboration remains key. Paint and coating companies, international standard organizations, safety groups, and energy regulators are all actively involved in assessing the adaptability of existing standards for hydrogen fires. The initial tests show promising results, suggesting that current oil and gas fire protection measures might be adapted for hydrogen fire protection, potentially leading to standards for the growing hydrogen industry.

Developing fire protection standards for the hydrogen industry remains a collective industry responsibility. Safety engineers, industry specialists, non-government officials (NGO), and policymakers must work together to ensure the hydrogen industry advances safely and responsibly. The paint and coatings industry, in particular, will play a crucial role in creating these standards. Leveraging their expertise in protective coatings, they can meet hydrogen's unique needs, from anti-corrosion to chemical resistance and passive fire protection.

———

Stuart Bradbury is the PPG business development manager of Fire Protection, Protective and Marine Coatings.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston nonprofit launches new energy education platform

energy ed

The Energy Education Foundation, a Houston-based nonprofit, will roll out a new app-based education platform just in time for back-to-school season.

Starting this fall, EEF will offer its new EnergyXP platform to students in middle schools and through community and education events across the country. The STEM-focused platform aims to boost exposure to oil and gas concepts and career paths, according to a release from the non-profit.

EnergyXP represents a fully redesigned, interactive version of the foundation's former Mobile Energy Learning Units, which now feature upgraded technology, enhanced curricula and app integration.

“EnergyXP marks the most recent development in our educational initiatives. We aim to inspire students nationwide to explore real-world energy concepts and careers,” Kristen Barley, executive director of the Energy Education Foundation, said in the release. “Our collaborative approach involves strong partnerships with educators, industry experts and local organizations to ensure that our programs are responsive to community needs. By prioritizing equitable access to quality STEM education, we can help build a more inclusive, future-ready energy workforce.”

The new platform offers 16 hands-on and digital STEM activities that introduce a variety of energy concepts through real-world applications while "showcasing the relevance of energy in everyday life," according to the release.

EEF will host two virtual sneak peeks of the platform on Aug. 7 and Aug. 8. Register here.

Enbridge's new Texas solar project to power Meta data centers

solar deal

Construction is underway on a new 600-megawatt solar project in Texas that will supply renewable energy to Meta Platforms Inc., the owner of Facebook, Instagram and other tech platforms.

Calgary-based Enbridge Inc., whose gas transmission and midstream operations are based in Houston, announced that Meta has agreed to purchase 100 percent of the power generated by its new $900 million solar project known as Clear Fork.

The clean energy developed at Clear Fork will be used to support Meta’s data center operations, according to a news release from Enbridge. Meta has had net-zero emissions across its operational portfolio since 2020, according to its 2024 environmental report. The company matches 100 percent of its data center usage with renewable energy.

"We are thrilled to partner with Enbridge to bring new renewable energy to Texas and help support our operations with 100% clean energy, " Urvi Parekh, Head of Global Energy at Meta, said in a news release.

The Clear Fork project is expected to be operational by the summer of 2027. It will join Enbridge’s first solar power project in Texas, Orange Grove, which was activated earlier this year, as well as the company’s Sequoia solar project, which is scheduled to go online in early 2026.

"Clear Fork demonstrates the growing demand for renewable power across North America from blue-chip companies who are involved in technology and data center operations," Matthew Akman, executive vice president of corporate strategy and president of power at Enbridge, said in the news release. "Enbridge continues to advance its world-class renewables development portfolio using our financial strength, supply chain reach and construction expertise under a low-risk commercial model that delivers strong competitive returns."

Energy experts: Executive order enhances federal permitting for AI data centers

Guest column

In an effort to accelerate the development of artificial intelligence, President Trump signed an executive order (EO) aimed at expediting the federal permitting process for data centers, particularly those supporting AI inference, training, simulation, or synthetic data generation.

Following the White House’s issuance of a broader AI Action Plan, the EO seeks to streamline regulatory burdens and utilize federal resources to encourage the development of data centers supporting AI, as well as the physical components and energy infrastructure needed to construct and provide power to these data centers.

Qualifying Projects

The EO directs several federal agencies to take actions to incentivize the development of “Qualifying Projects,” which the EO defines as “Data Centers” and “Covered Component Projects.” The EO defines “Data Center Projects” as facilities that require over 100 megawatts (MW) of new load dedicated to AI inference, training, simulation, or synthetic data generation. The EO defines Covered Component Projects as materials, products, and infrastructure that are required to build Data Center Projects or upon which Data Center Projects depend, including energy infrastructure projects like transmission lines and substations, dispatchable base load energy sources like natural gas, geothermal, and nuclear used principally to power Data Center Projects, and semiconductors and related equipment. For eligibility as a Qualifying Project, the project sponsor must commit at least $500 million in capital expenditures. Data Center Projects and Covered Component Projects may also meet the definition of Qualifying Project if they protect national security or are otherwise designated as Qualifying Projects by the Secretary of Defense, Secretary of the Interior, Secretary of Commerce, or Secretary of Energy.

Streamlining Permitting of Qualifying Projects

The EO outlines the following strategies aimed at improving the efficiency of environmental reviews and permitting for Qualifying Projects:

  • NEPA Applicability: The Council on Environmental Quality (CEQ), in coordination with relevant agencies, is directed to utilize existing and new categorical exclusions under the National Environmental Policy Act (NEPA) to cover actions related to Qualifying Projects, which “normally do not have a significant effect on the human environment.” The EO states that where federal financial assistance represents less than 50 percent of total project costs of a Qualifying Project, the Project shall be presumed not to be a “major Federal action” requiring NEPA review.
  • FAST-41: The Executive Director of the Federal Permitting Improvement Steering Council (FPISC) is empowered to designate a Qualifying Project as a “transparency project” under the Fixing America’s Surface Transportation Act (FAST-41) and expedite its transition from a transparency project to a “covered project” under FAST-41. FPISC is directed to consider all available options to designate a Qualifying Project as a FAST-41 covered project, even where the Qualifying Project may not be eligible.
  • EPA Permitting: The US Environmental Protection Agency (EPA) is directed to modify applicable regulations under several environmental protection statutes impacting the development of Qualifying Projects on federal and non-federal lands. EPA is also directed to develop guidance to expedite environmental reviews for identification and reuse of Brownfield and Superfund Sites suitable for Qualifying Projects. Importantly, state environmental permitting agencies are not subject to the EO.
  • Corps Permitting: The US Army Corps of Engineers is directed to review the nationwide permits issued under Section 404 of the Clean Water Act and Section 10 of the Rivers and Harbors Act of 1899 to determine whether an activity-specific nationwide permit is needed to facilitate the efficient permitting of activities related to Qualifying Projects.
  • Interior Permitting: The US Department of the Interior is directed to consult with the US Department of Commerce regarding the streamlining of Endangered Species Act consultations for Qualifying Projects, and to work with the US Department of Energy to identify federal lands that may be available for use by Qualifying Projects and offer appropriate authorizations to project sponsors.

Federal Incentives for Qualifying Projects

The EO also directs the US Secretary of Commerce to “launch an initiative to provide financial support for Qualifying Projects,” which may include loans, grants, tax incentives, and offtake agreements. The EO further directs all “relevant agencies” to identify and submit to the White House Office of Office of Science and Technology Policy any relevant existing financial support that can be used to assist Qualifying Projects, consistent with the protection of national security.

The EO reinforces the Trump administration’s focus on AI and creates new opportunities for both AI data center developers and energy infrastructure companies providing power or project components to these data centers. Proactive engagement with relevant agencies will be crucial for capitalizing on the opportunities created by this EO and the broader AI Action Plan. By leveraging these financial and environmental incentives, project developers may be able to shorten permitting timelines, reduce costs, and take advantage of federal financial support.

---

Jason B. Hutt, Taylor M. Stuart and Anouk Nouet are lawyers at Bracewell. Hutt is chair of the firm’s environment, lands and resources department. Stuart counsels energy, infrastructure, and industrial clients on matters involving environmental and natural resources law and policy. Nouet advises clients on litigation, enforcement and project development matters with a focus on complex environmental and natural resources law and policy.