guest column

Unlocking climate tech’s potential in Houston: What health innovation's rise can teach us

If we can channel the same sense of urgency and public commitment toward climate change as we did for health crises in the past, climate tech could overcome its current obstacles. Photo via Getty Images

Over the past several decades, climate tech has faced numerous challenges, ranging from inconsistent public support to a lack of funding from cautious investors. While grassroots organizations and climate innovators have made notable efforts to address urgent environmental issues, we have yet to see large-scale, lasting impact.

A common tendency is to compare climate tech to the rapid advancements made in digital and software technology, but perhaps a more appropriate parallel is the health tech sector, which encountered many of the same struggles in its early days.

Observing the rise of health tech and the economic and political support it received, we can uncover strategies that could stabilize and propel climate tech forward.

Health tech's slow but steady rise

Health tech’s slow upward trajectory began in the mid-20th century, with World War II serving as a critical turning point for medical research and development. Scientists working on wartime projects recognized the broader benefits of increased research funding for the general public, and soon after, the Public Health Service Act of 1944 was passed. This landmark legislation directed resources toward eradicating widespread diseases, viewing them as a national economic threat. By acknowledging diseases as a danger to both public health and the economy, the government laid the groundwork for significant policy changes.

This serves as an essential lesson for climate tech: if the federal government were to officially recognize climate change as a direct threat to the nation’s economy and security, it could lead to similar shifts in policy and resource allocation.

The role of public advocacy and federal support

The growth of health tech wasn’t solely reliant on government intervention. Public advocacy played a key role in securing ongoing support. Voluntary health agencies, such as the American Cancer Society, lobbied for increased funding and spread awareness, helping to attract public interest and investment. But even with this advocacy, early health tech startups struggled to secure venture capital. VCs were hesitant to invest in areas they didn’t fully understand, and without sustained government funding and public backing, it’s unlikely that health tech would have grown as quickly as it has.

The lesson here for climate tech is clear: strong public advocacy and education are crucial. However, unlike health tech, climate tech faces a unique obstacle — there is still a significant portion of the population that either denies the existence of climate change or doesn’t view it as an immediate concern. This lack of urgency makes it difficult to galvanize the public and attract the necessary long-term investment.

Government support: A mixed bag

There have been legislative efforts to support climate tech, though they haven’t yet led to the explosive growth seen in health tech. For example, the Federal Technology Transfer Act of 1986 and the Bayh-Dole Act of 1980 gave universities and small businesses the rights to profit from their innovations, including climate-related research. More recently, the Inflation Reduction Act (IRA) of 2022 has been instrumental in advancing climate tech by creating opportunities to build projects, lower household energy costs, and reduce greenhouse gas emissions.

Despite this federal support, many climate tech companies are still struggling to scale. A primary concern for investors is the longer time horizon required for climate startups to yield returns. Scalability is crucial — companies must demonstrate how they will grow profitably over time, but many climate tech startups lack practical long-term business models.

As climate investor Yao Huang put it, “At the end of the day, a climate tech company needs to demonstrate how it will make money. We can apply political pressure and implement governmental policies, but if it is not profitable, it won’t scale or create meaningful impact.”

The public’s role in scaling climate tech

Health tech’s success can largely be attributed to a combination of federal funding, public advocacy, and long-term investment from knowledgeable VCs. Climate tech has federal support in place, thanks to the IRA, but is still lacking the same level of public backing. Health tech overcame its hurdles when public awareness about the importance of medical advancements grew, and voluntary health agencies helped channel donations toward research and innovation.

In contrast, climate nonprofits like Cool Earth, Environmental Defense Fund, and Clean Air Task Force face a severe funding shortfall. A 2020 study revealed that climate nonprofits aiming to reduce greenhouse gas emissions only received $2 billion in donations, representing just 0.4% of all philanthropic funding. Without greater public awareness/sense of urgency and financial support, these groups cannot effectively advocate for climate tech startups or lobby for necessary policy changes. This type of philanthropic funding is also known as ‘catalytic capital’ or ‘impact-first-capital’. Prime Impact Fund is one such fund that does not ‘view investments as concessionary on return’. Rather their patient and flexible capital allows support of high risk, high-reward ventures.

A path forward for climate tech

The most valuable insight from health tech’s growth is that government intervention, while critical, is not enough to guarantee the success of an emerging sector. Climate tech needs a stronger support system, including informed investors, widespread public backing, and nonprofits with the financial resources to advocate for industry-wide growth.

If we can channel the same sense of urgency and public commitment toward climate change as we did for health crises in the past, climate tech could overcome its current obstacles.The future of climate tech depends not just on government policies, but on educating the public, rallying financial support, and building a robust infrastructure for long-term growth.

———

Nada Ahmed is the founding partner at Houston-based Energy Tech Nexus, a startup hub for the energy transition.

Trending News

A View From HETI

Ten climatetech startups were named most-promising at this annual Rice Alliance Energy Tech Venture Forum. Photo courtesy Rice Alliance.

Investors at the Rice Alliance Energy Tech Venture Forum have named the 10 most-promising startups among the group of 100 clean tech companies participating in the event.

The 22nd annual event was held yesterday, Sept. 18, at Rice University’s Jones Graduate School of Business and was part of the second Houston Energy and Climate Startup Week.

The most-promising startups will receive $7,000 in in-kind legal services from Baker Botts.

The 10 most-promising companies included:

  • Houston-based Xplorobot, which has developed laser gas imaging technology for the first handheld methane detection device approved by the EPA as an alternative test method
  • Seattle-based Badwater Alchemy, a desalination company that uses nano materials to purify saline water at a fraction of the cost of traditional methods
  • San Francisco-based Ammobia, which is developing a clean ammonia production process
  • Illinois-based Celadyne Technologies, which is building hydrogen for industrial decarbonization with durable and efficient fuel cells and electrolyzers
  • Massachusetts-based MacroCycle Technologies, which converts plastic waste in the form of bottles, food trays and polyester textiles into virgin-grade mPET resin
  • Yorkshire, England-based AtoMe, a global developer of zero-carbon fertiliser products
  • Colorado-based Advanced Thermovoltaic Systems (ATS) Energy, a renewable energy semiconductor manufacturing company
  • North Carolina-based Lukera Energy, which is converting waste methane into high-value fuel
  • Midland, Texas-based AI Driller, a company that uses AI and machine learning to enable remote operations and provide historical drilling data for survey management, anti-collision monitoring and iob reporting
  • New York-based Fast Metals Inc., which has developed a chemical process to extract valuable metals from complex toxic mine tailings that is capable of producing iron, aluminum, scandium, titanium and other rare earth elements using industrial waste and waste CO2 as inputs

Arculus Solutions won the People's Choice Award. The New Jersey-based company retrofits natural gas pipelines for safe hydrogen transportation. It also won Track A: Hydrogen, Fuel Cells, Buildings, Water, & Other Energy Solutions at the Energy Venture Day and Pitch Competition during CERAWeek earlier this year.

The 100 energy technology ventures selected to participate in the forum were named earlier this year. See the full list here.

Trending News