If we can channel the same sense of urgency and public commitment toward climate change as we did for health crises in the past, climate tech could overcome its current obstacles. Photo via Getty Images

Over the past several decades, climate tech has faced numerous challenges, ranging from inconsistent public support to a lack of funding from cautious investors. While grassroots organizations and climate innovators have made notable efforts to address urgent environmental issues, we have yet to see large-scale, lasting impact.

A common tendency is to compare climate tech to the rapid advancements made in digital and software technology, but perhaps a more appropriate parallel is the health tech sector, which encountered many of the same struggles in its early days.

Observing the rise of health tech and the economic and political support it received, we can uncover strategies that could stabilize and propel climate tech forward.

Health tech's slow but steady rise

Health tech’s slow upward trajectory began in the mid-20th century, with World War II serving as a critical turning point for medical research and development. Scientists working on wartime projects recognized the broader benefits of increased research funding for the general public, and soon after, the Public Health Service Act of 1944 was passed. This landmark legislation directed resources toward eradicating widespread diseases, viewing them as a national economic threat. By acknowledging diseases as a danger to both public health and the economy, the government laid the groundwork for significant policy changes.

This serves as an essential lesson for climate tech: if the federal government were to officially recognize climate change as a direct threat to the nation’s economy and security, it could lead to similar shifts in policy and resource allocation.

The role of public advocacy and federal support

The growth of health tech wasn’t solely reliant on government intervention. Public advocacy played a key role in securing ongoing support. Voluntary health agencies, such as the American Cancer Society, lobbied for increased funding and spread awareness, helping to attract public interest and investment. But even with this advocacy, early health tech startups struggled to secure venture capital. VCs were hesitant to invest in areas they didn’t fully understand, and without sustained government funding and public backing, it’s unlikely that health tech would have grown as quickly as it has.

The lesson here for climate tech is clear: strong public advocacy and education are crucial. However, unlike health tech, climate tech faces a unique obstacle — there is still a significant portion of the population that either denies the existence of climate change or doesn’t view it as an immediate concern. This lack of urgency makes it difficult to galvanize the public and attract the necessary long-term investment.

Government support: A mixed bag

There have been legislative efforts to support climate tech, though they haven’t yet led to the explosive growth seen in health tech. For example, the Federal Technology Transfer Act of 1986 and the Bayh-Dole Act of 1980 gave universities and small businesses the rights to profit from their innovations, including climate-related research. More recently, the Inflation Reduction Act (IRA) of 2022 has been instrumental in advancing climate tech by creating opportunities to build projects, lower household energy costs, and reduce greenhouse gas emissions.

Despite this federal support, many climate tech companies are still struggling to scale. A primary concern for investors is the longer time horizon required for climate startups to yield returns. Scalability is crucial — companies must demonstrate how they will grow profitably over time, but many climate tech startups lack practical long-term business models.

As climate investor Yao Huang put it, “At the end of the day, a climate tech company needs to demonstrate how it will make money. We can apply political pressure and implement governmental policies, but if it is not profitable, it won’t scale or create meaningful impact.”

The public’s role in scaling climate tech

Health tech’s success can largely be attributed to a combination of federal funding, public advocacy, and long-term investment from knowledgeable VCs. Climate tech has federal support in place, thanks to the IRA, but is still lacking the same level of public backing. Health tech overcame its hurdles when public awareness about the importance of medical advancements grew, and voluntary health agencies helped channel donations toward research and innovation.

In contrast, climate nonprofits like Cool Earth, Environmental Defense Fund, and Clean Air Task Force face a severe funding shortfall. A 2020 study revealed that climate nonprofits aiming to reduce greenhouse gas emissions only received $2 billion in donations, representing just 0.4% of all philanthropic funding. Without greater public awareness/sense of urgency and financial support, these groups cannot effectively advocate for climate tech startups or lobby for necessary policy changes. This type of philanthropic funding is also known as ‘catalytic capital’ or ‘impact-first-capital’. Prime Impact Fund is one such fund that does not ‘view investments as concessionary on return’. Rather their patient and flexible capital allows support of high risk, high-reward ventures.

A path forward for climate tech

The most valuable insight from health tech’s growth is that government intervention, while critical, is not enough to guarantee the success of an emerging sector. Climate tech needs a stronger support system, including informed investors, widespread public backing, and nonprofits with the financial resources to advocate for industry-wide growth.

If we can channel the same sense of urgency and public commitment toward climate change as we did for health crises in the past, climate tech could overcome its current obstacles.The future of climate tech depends not just on government policies, but on educating the public, rallying financial support, and building a robust infrastructure for long-term growth.

———

Nada Ahmed is the founding partner at Houston-based Energy Tech Nexus, a startup hub for the energy transition.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston AI energy forecasting company lands investment from Samsung Ventures

funding for forecasts

Amperon, a Houston-based AI-powered forecasting solutions company, has received an investment for an undisclosed amount from Samsung Ventures, the corporate venture arm of Samsung Group.

According to Amperon, the funding will be put toward the company's global growth and next-generation product development. Samsung Ventures invests in emerging businesses developing technologies for the AI, advanced devices and energy-related sectors.

“Samsung Ventures’ investment is a strong validation of our mission to transform the way energy is forecasted and traded,” Sean Kelly, CEO and co-founder of Amperon, said in a news release. “Samsung’s global footprint and leadership in semiconductors, data infrastructure, and AI acceleration make them a natural fit as we expand Amperon’s reach into energy-intensive sectors like data centers. Their track record of scaling next-generation technologies aligns perfectly with our vision to build a more intelligent, resilient, and data-driven energy system.”

Amperon was founded in 2018. Its AI models combine real-time weather, consumption and market data for energy retailers, utilities and independent power producers.

Last year, the company launched its weather-informed grid demand Mid-Term Forecast (MTF), which provides users with data on electricity demand up to seven months in advance. It also secured strategic investments from Acario, the corporate venture capital and innovation division of Tokyo Gas, as well as National Grid Partners, the venture investment and innovation arm of National Grid (NYSE: NGG).

After expanding into Europe in 2024, the company has continued to see international growth, and currently operates in the U.S., Canada, Mexico, Australia, Europe and the Middle East.

“Amperon has demonstrated strong technical capabilities and global traction in a rapidly evolving energy landscape,” a spokesperson for Samsung Ventures added in the release. “Their ability to forecast and model real-time energy data at global scale positions them as a key enabler of smarter energy systems and climate resilience. We are pleased to invest in a company developing technologies that support a more sustainable and digitized world.”

Solar surpasses coal to become ERCOT’s third-largest power source in 2025

by the numbers

Solar barely eclipsed coal to become the third biggest source of energy generated for the Electric Reliability Council of Texas (ERCOT) in 2025, according to new data.

In 2024, solar represented 10 percent of energy supplied to the ERCOT electric grid. Last year, that number climbed to 14 percent. During the same period, coal’s share remained at 13 percent.

From the largest to smallest share, here’s the breakdown of other ERCOT energy sources in 2025 compared with 2024:

  • Combined-cycle gas: 33 percent, down from 35 percent in 2024
  • Wind: 23 percent, down from 24 percent in 2024
  • Natural gas: 8 percent, down from 9 percent in 2024
  • Nuclear: 8 percent, unchanged from 2024
  • Other sources: 1 percent, unchanged from 2024

Combined, solar and wind accounted for 37 percent of ERCOT energy sources.

Looking ahead, solar promises to reign as the star of the ERCOT show:

  • An ERCOT report released in December 2024 said solar is on track to continue outpacing other energy sources in terms of growth of installed generating capacity, followed by battery energy storage.
  • In December, ERCOT reported that more than 11,100 megawatts of new generating capacity had been added to its grid since the previous winter. One megawatt of electricity serves about 250 homes in peak-demand periods. Battery energy storage made up 47 percent of the new capacity, with solar in second place at 40 percent.

The mix of ERCOT’s energy is critical to Texas’ growing need for electricity, as ERCOT manages about 90 percent of the electric load for the state, including the Houston metro area. Data centers, AI and population growth are driving heightened demand for electricity.

In the first nine months of 2025, Texas added a nation-leading 7.4 gigawatts of solar capacity, according to a report from data and analytics firm Wood Mackenzie and the Solar Energy Industries Association.

“Remarkable growth in Texas, Indiana, Utah and other states ... shows just how decisively the market is moving toward solar,” says Abigail Ross Hopper, president and CEO of the solar association.