With the projected uptick of new hydrogen production projects, an expert explores hydrogen fire protection, reflects on the measures and standards established to mitigate risks, and more. Photo courtesy

As First State Hydrogen continues to advance its groundbreaking clean hydrogen production facility in the U.S., the spotlight intensifies as hydrogen becomes an increasingly key player in the energy transition.

With the projected uptick of new hydrogen production and handling projects, let's explore hydrogen fire protection, reflect on the measures and standards established to mitigate risks, and ensure that the hydrogen economy thrives.

The challenges of hydrogen fire protection

As the hydrogen industry experiences a boom, the issue of fire protection emerges as a critical concern. It's important to note that hydrogen fires can pose a significantly higher risk than traditional fuel fires, burning hotter and more rapidly due to their higher outflow rates. The diverse range of storage and transport options, from cryogenic liquids to high-pressure cylinders, further complicates safety measures. This underscores the industry's urgent need to prioritize risk mitigation for common hydrogen applications, such as high-pressure cylinders used in fuel-cell vehicles and data centers, to ensure safety as this energy source scales up.

Hydrogen jet fire test results

The author's company, a global leader in paint and coatings, recently tested an industry leading, flexible epoxy intumescent passive fire protection (PFP) coating to evaluate the material response against high pressure hydrogen jet fires to determine if current ISO jet fire standards are adequate for the challenges hydrogen poses. Collaborating with the United Kingdom's Health and Safety Authority, they conducted hydrogen jet fire tests at a specialized facility. The team replicated conditions of high-pressure hydrogen leaks and their effects on steel and protective coatings. The initial tests revealed unprotected steel reaching critical temperatures rapidly under hydrogen fires. The steel coated with advanced PFP coatings proved highly effective. The PFP coatings help keep steel well below critical temperatures throughout the exposure, indicating their potential to protect against structural failures during hydrogen fires.

These initial tests can contribute to setting standards for hydrogen fire protection. The results offer safety experts critical data for better protecting industrial environments against high-pressure hydrogen jet fires.

A call for a fire protection standard

The hydrogen industry currently relies on oil and gas regulations for specialized fire protection. While safety experts actively debate whether these standards can be adapted or whether entirely new criteria are necessary, industry collaboration remains key. Paint and coating companies, international standard organizations, safety groups, and energy regulators are all actively involved in assessing the adaptability of existing standards for hydrogen fires. The initial tests show promising results, suggesting that current oil and gas fire protection measures might be adapted for hydrogen fire protection, potentially leading to standards for the growing hydrogen industry.

Developing fire protection standards for the hydrogen industry remains a collective industry responsibility. Safety engineers, industry specialists, non-government officials (NGO), and policymakers must work together to ensure the hydrogen industry advances safely and responsibly. The paint and coatings industry, in particular, will play a crucial role in creating these standards. Leveraging their expertise in protective coatings, they can meet hydrogen's unique needs, from anti-corrosion to chemical resistance and passive fire protection.

———

Stuart Bradbury is the PPG business development manager of Fire Protection, Protective and Marine Coatings.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston robotics company partners with Marathon Petroleum to scale fleet

robot alliance

Houston- and Boston-based Square Robot Inc. has announced a partnership with downstream and midstream energy giant Marathon Petroleum Corp. (NYSE: MPC).

The partnership comes with an undisclosed amount of funding from Marathon, which Square Robot says will help "shape the design and development" of its submersible robotics platform and scale its fleet for nationwide tank inspections.

“Marathon’s partnership marks a major milestone in our mission to transform industrial tank inspection,” David Lamont, CEO of Square Robot, said in a news release. “They recognize the proven value of our robotic inspections—eliminating confined space entry, reducing the environmental impact, and delivering major cost efficiencies all while keeping tanks on-line and working. We’re excited to work together with such a great company to expand inspection capabilities and accelerate innovation across the industry.”

The company closed a $13 million series B last year. At the time of closing, Square Robot said it would put the funding toward international expansion in Europe and the Middle East.

Square Robot develops autonomous, submersible robots that are used for storage tank inspections and eliminate the need for humans to enter dangerous and toxic environments. Its newest tank inspection robot, known as the SR-3HT, became commercially available and certified to operate at a broader temperature range than previous models in the company's portfolio this fall.

The company was first founded in the Boston area in 2016 and launched its Houston office in 2019.

Eclipse Energy lands Weatherford investment to scale clean hydrogen tech

clean energy collab

Oil and gas giant Weatherford International (NASDAQ: WFRD) has made a capital investment for an undisclosed amount in Eclipse Energy as part of a collaborative partnership aimed at scaling and commercializing Eclipse's clean fuel technology.

According to a release, joint projects from the two Houston-based companies are expected to launch as soon as January 2026. The partnership aims to leverage Weatherford's global operations with Eclipse Energy's pioneering subsurface biotechnology that converts end-of-life oil fields into low-cost, sustainable hydrogen sources.

“We strongly believe the subsurface is the most overlooked climate asset,” Prabhdeep Singh Sekhon, CEO of Eclipse Energy, said in the release. “This partnership demonstrates how traditional oilfield expertise and frontier biotechnology can come together to transform the energy transition. Weatherford’s global reach and deep technical knowledge will accelerate our ability to scale our low-carbon technology rapidly and cost-effectively.”

Eclipse Energy, previously known as Gold H2, completed its first field trial this summer, demonstrating subsurface bio-stimulated hydrogen production. According to the company, its technology could yield up to 250 billion kilograms of low-carbon hydrogen, and it could also extend "beyond hydrogen, laying the foundation for the next generation of subsurface clean energy fuels."

Last month, Eclipse Energy won in the Energy Transition Business category at the 2025 Houston Innovation Awards. The company closed an $8 million series A this year and has plans to raise another round in 2026.