With the projected uptick of new hydrogen production projects, an expert explores hydrogen fire protection, reflects on the measures and standards established to mitigate risks, and more. Photo courtesy

As First State Hydrogen continues to advance its groundbreaking clean hydrogen production facility in the U.S., the spotlight intensifies as hydrogen becomes an increasingly key player in the energy transition.

With the projected uptick of new hydrogen production and handling projects, let's explore hydrogen fire protection, reflect on the measures and standards established to mitigate risks, and ensure that the hydrogen economy thrives.

The challenges of hydrogen fire protection

As the hydrogen industry experiences a boom, the issue of fire protection emerges as a critical concern. It's important to note that hydrogen fires can pose a significantly higher risk than traditional fuel fires, burning hotter and more rapidly due to their higher outflow rates. The diverse range of storage and transport options, from cryogenic liquids to high-pressure cylinders, further complicates safety measures. This underscores the industry's urgent need to prioritize risk mitigation for common hydrogen applications, such as high-pressure cylinders used in fuel-cell vehicles and data centers, to ensure safety as this energy source scales up.

Hydrogen jet fire test results

The author's company, a global leader in paint and coatings, recently tested an industry leading, flexible epoxy intumescent passive fire protection (PFP) coating to evaluate the material response against high pressure hydrogen jet fires to determine if current ISO jet fire standards are adequate for the challenges hydrogen poses. Collaborating with the United Kingdom's Health and Safety Authority, they conducted hydrogen jet fire tests at a specialized facility. The team replicated conditions of high-pressure hydrogen leaks and their effects on steel and protective coatings. The initial tests revealed unprotected steel reaching critical temperatures rapidly under hydrogen fires. The steel coated with advanced PFP coatings proved highly effective. The PFP coatings help keep steel well below critical temperatures throughout the exposure, indicating their potential to protect against structural failures during hydrogen fires.

These initial tests can contribute to setting standards for hydrogen fire protection. The results offer safety experts critical data for better protecting industrial environments against high-pressure hydrogen jet fires.

A call for a fire protection standard

The hydrogen industry currently relies on oil and gas regulations for specialized fire protection. While safety experts actively debate whether these standards can be adapted or whether entirely new criteria are necessary, industry collaboration remains key. Paint and coating companies, international standard organizations, safety groups, and energy regulators are all actively involved in assessing the adaptability of existing standards for hydrogen fires. The initial tests show promising results, suggesting that current oil and gas fire protection measures might be adapted for hydrogen fire protection, potentially leading to standards for the growing hydrogen industry.

Developing fire protection standards for the hydrogen industry remains a collective industry responsibility. Safety engineers, industry specialists, non-government officials (NGO), and policymakers must work together to ensure the hydrogen industry advances safely and responsibly. The paint and coatings industry, in particular, will play a crucial role in creating these standards. Leveraging their expertise in protective coatings, they can meet hydrogen's unique needs, from anti-corrosion to chemical resistance and passive fire protection.

———

Stuart Bradbury is the PPG business development manager of Fire Protection, Protective and Marine Coatings.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

New report maps Houston workforce development strategies as companies transition to cleaner energy

to-do list

The University of Houston’s Energy University latest study with UH’s Division of Energy and Innovation with stakeholders from the energy industry, academia have released findings from a collaborative white paper, titled "Workforce Development for the Future of Energy.”

UH Energy’s workforce analysis found that the greatest workforce gains occur with an “all-of-the-above” strategy to address the global shift towards low-carbon energy solutions. This would balance electrification and increased attention to renewables with liquid fuels, biomass, hydrogen, carbon capture, utilization and storage commonly known as CCUS, and carbon dioxide removal, according to a news release.

The authors of the paper believe this would support economic and employment growth, which would leverage workers from traditional energy sectors that may lose jobs during the transition.

The emerging hydrogen ecosystem is expected to create about 180,000 new jobs in the greater Houston area, which will offer an average annual income of approximately $75,000. Currently, 40 percent of Houston’s employment is tied to the energy sector.

“To sustain the Houston region’s growth, it’s important that we broaden workforce participation and opportunities,” Ramanan Krishnamoorti, vice president of energy and innovation at UH, says in a news release. “Ensuring workforce readiness for new energy jobs and making sure we include disadvantaged communities is crucial.”

Some of the key takeaways include strategies that include partnering for success, hands-on training programs, flexible education pathways, comprehensive support services, and early and ongoing outreach initiatives.

“The greater Houston area’s journey towards a low-carbon future is both a challenge and an opportunity,” Krishnamoorti continues. “The region’s ability to adapt and lead in this new era will depend on its commitment to collaboration, innovation, and inclusivity. By preparing its workforce, engaging its communities, and leveraging its industrial heritage, we can redefine our region and continue to thrive as a global energy leader.”

The study was backed by federal funding from the Department of the Treasury through the State of Texas under the Resources and Ecosystems Sustainability, Tourist Opportunities, and Revived Economies of the Gulf Coast States Act of 2012.

Houston geothermal startup selects Texas location for first energy storage facility

major milestone

Houston-based geothermal energy startup Sage Geosystems has teamed up with a utility provider for an energy storage facility in the San Antonio metro area.

The three-megawatt EarthStore facility will be on land controlled by the San Miguel Electric Cooperative, which produces electricity for customers in 47 South Texas counties. The facility will be located in the town of Christine, near the cooperative’s coal-fired power plant.

Sage says its energy storage system will be paired with solar energy to supply power for the grid operated by the Electric Reliability Council of Texas (ERCOT). The facility is set to open later this year.

“Once operational, our EarthStore facility in Christine will be the first geothermal energy storage system to store potential energy deep in the earth and supply electrons to a power grid,” Cindy Taff, CEO of Sage Geosystems, says in a news release.

The facility is being designed to store geothermal energy during six- to 10-hour periods.

“Long-duration energy storage is crucial for the ERCOT utility grid, especially with the increasing integration of intermittent wind and solar power generation,” says Craig Courter, CEO of the San Miguel Electric Cooperative.