top stories

Equinor buys into CCS project, Rice Alliance names energy startup participants, and more trending news

Who will be presenting at the 20th annual Rice Alliance Energy Tech Venture Forum — and more trending news from the week. Photo via rice.edu

Editor's note: It's been a busy news week for energy transition in Houston, and some of this week's headlines resonated with EnergyCapital readers on social media and daily newsletter. Trending news included Rice Alliance naming its Energy Tech Venture Day participants, Equinor opting in to a CCS project on the Gulf Coast, and more.

Exclusive: Rice Alliance announces participants ahead of 20th annual energy symposium

Next month, 96 startups will pitch at an annual event focused on the future of energy. Here's who will be there. Photo via rice.edu

Dozens of companies will be a part of an upcoming energy-focused conference at Rice University — from climate tech startups to must-see keynote speakers.

The 20th annual Rice Alliance Energy Tech Venture Forum will take place on September 21 at Rice University’s Jones Graduate School of Business. Anyone who's interested in learning more about the major players in the low-carbon future in Houston and beyond should join the industry leaders, investors, and promising energy and cleantech startups in attendance.

This year's keynote speakers include Christina Karapataki, partner at Breakthrough Energy Ventures, the venture capital fund backed by Bill Gates; Scott Nyquist, vice chairman at Houston Energy Transition Initiative, founded by the Greater Houston Partnership; and Jeff Tillery, COO at Veriten. Read more.

Equinor buys into massive CCS joint venture project near Houston

Through an acquisition, Equinor has joined a joint venture carbon capture and storage project in southeast Texas. Image via Getty Images

A Norwegian energy company with its United States headquarters in Houston has announced it has acquired a significant chunk of a carbon capture and storage joint venture.

Equinor now owns a 25 percent interest in Bayou Bend CCS LLC, which is reported to be one of the largest domestic carbon capture and storage projects. The project — a JV between Chevron, Talos Energy Inc., and now Equinor, is located along the Gulf Coast in southeast Texas. The terms of the deal were not disclosed

“Commercial CCS solutions are critical for hard-to-abate industries to meet their climate ambitions while maintaining their activity," Grete Tveit, senior vice president for Low Carbon Solutions in Equinor, says in a news release. "Entering Bayou Bend strengthens our low carbon solutions portfolio and supports our ambition to mature and develop 15-30 million tonnes of equity CO2 transport and storage capacity per year by 2035. Our experience from developing carbon storage projects can help advance decarbonization efforts in one of the largest industrial corridors in the US." Read more.

New Houston company launches to turn recycled materials into fuel

Tired of slow tire decomposition? This Houston company has a solution. Photo via InnoVentRenewables.com

Every year, over a billion tires are disposed of globally, and, while in use, tires are used to reach maximum speed on the road, their decomposition times are inordinately slow.

Houston-based InnoVent Renewables has a solution. The company launched this week to drive renewable energy forward with its proprietary continuous pyrolysis technology that is able to convert waste tires, plastics, and biomass into fuels and chemicals.

“We are thrilled to formally launch InnoVent Renewables and plan to ramp-up operations into early 2024," InnoVent Renewables CEO Vibhu Sharma says in a news release. “Our investors, strategic advisors, and management team are all fully committed to our success as we address the global challenge of waste tires. We firmly believe our proven process, deployed at scale globally, will have a huge positive impact on our climate and fill a clear environment need.” Read more.

French company to acquire Houston-based battery storage startup in $1B deal

Broad Reach Power's battery storage assets piqued a French company's interest. Photo via broadreachpower.com

A French utility company is buying the bulk of Houston-based Broad Reach Power’s battery energy storage business in a deal carrying an equity value of more than $1 billion.

Engie, has agreed to purchase the majority of the startup’s battery storage business from EnCap Energy Transition Fund I and three investment partners — New York City-based Yorktown Partners, Switzerland-based Mercuria Energy, and New York City-based Apollo Infrastructure Funds.

“This acquisition is fully in line with Engie’s strategy: It will contribute to the development of a low-carbon, affordable, and resilient energy system where flexible assets will play a critical role alongside renewables,” says Catherine MacGregor, the utility’s CEO. Read more.

How this 78-year-old Houston chemical company is evolving as an energy tech leader

“When we were founded, we were a chemical company. Today, we have morphed into a technology company,” says Kendra Lee, CEO of Merichem. Photo via LinkedIn

Kendra Lee had no designs on running the family business.

“In fact, I never planned on being a part of Merichem,” Lee recalls.

In 1945, Lee’s grandfather, John T. Files, and a pair of business partners founded the company in Houston. Their goal was to take a potential waste product and turn it into something that would benefit the oil and gas industry — an early attempt at sustainability.

What started as a soap and industrial cleaning company began procuring cresylate, which is a waste from the refineries treating gasoline, to recover spent cresylic acids, which are highly caustic, and refine them so they could be sold into the industrial chemicals market. Read more.

Trending News

A View From HETI

Ahmad Elgazzar, Haotian Wang and Shaoyun Hao were members of a Rice University team that recently published findings on how acid bubbling can improve CO2 reduction systems. Photo courtesy Rice.

In a new study published in the journal Science, a team of Rice University researchers shared findings on how acid bubbles can improve the stability of electrochemical devices that convert carbon dioxide into useful fuels and chemicals.

The team led by Rice associate professor Hoatian Wang addressed an issue in the performance and stability of CO2 reduction systems. The gas flow channels in the systems often clog due to salt buildup, reducing efficiency and causing the devices to fail prematurely after about 80 hours of operation.

“Salt precipitation blocks CO2 transport and floods the gas diffusion electrode, which leads to performance failure,” Wang said in a news release. “This typically happens within a few hundred hours, which is far from commercial viability.”

By using an acid-humidified CO2 technique, the team was able to extend the operational life of a CO2 reduction system more than 50-fold, demonstrating more than 4,500 hours of stable operation in a scaled-up reactor.

The Rice team made a simple swap with a significant impact. Instead of using water to humidify the CO2 gas input into the reactor, the team bubbled the gas through an acid solution such as hydrochloric, formic or acetic acid. This process made more soluble salt formations that did not crystallize or block the channels.

The process has major implications for an emerging green technology known as electrochemical CO2 reduction, or CO2RR, that transforms climate-warming CO2 into products like carbon monoxide, ethylene, or alcohols. The products can be further refined into fuels or feedstocks.

“Using the traditional method of water-humidified CO2 could lead to salt formation in the cathode gas flow channels,” Shaoyun Hao, postdoctoral research associate in chemical and biomolecular engineering at Rice and co-first author, explained in the news release. “We hypothesized — and confirmed — that acid vapor could dissolve the salt and convert the low solubility KHCO3 into salt with higher solubility, thus shifting the solubility balance just enough to avoid clogging without affecting catalyst performance.”

The Rice team believes the work can lead to more scalable CO2 electrolyzers, which is vital if the technology is to be deployed at industrial scales as part of carbon capture and utilization strategies. Since the approach itself is relatively simple, it could lead to a more cost-effective and efficient solution. It also worked well with multiple catalyst types, including zinc oxide, copper oxide and bismuth oxide, which are allo used to target different CO2RR products.

“Our method addresses a long-standing obstacle with a low-cost, easily implementable solution,” Ahmad Elgazzar, co-first author and graduate student in chemical and biomolecular engineering at Rice, added in the release. “It’s a step toward making carbon utilization technologies more commercially viable and more sustainable.”

A team led by Wang and in collaboration with researchers from the University of Houston also shared findings on salt precipitation buildup and CO2RR in a recent edition of the journal Nature Energy. Read more here.

Trending News