Tired of slow tire decomposition? This Houston company has a solution. Photo via InnoVentRenewables.com

New Houston company launches to turn recycled materials into fuel

renewables

Every year, over a billion tires are disposed of globally, and, while in use, tires are used to reach maximum speed on the road, their decomposition times are inordinately slow.

Houston-based InnoVent Renewables has a solution. The company launched this week to drive renewable energy forward with its proprietary continuous pyrolysis technology that is able to convert waste tires, plastics, and biomass into fuels and chemicals.

“We are thrilled to formally launch InnoVent Renewables and plan to ramp-up operations into early 2024," InnoVent Renewables CEO Vibhu Sharma says in a news release. “Our investors, strategic advisors, and management team are all fully committed to our success as we address the global challenge of waste tires. We firmly believe our proven process, deployed at scale globally, will have a huge positive impact on our climate and fill a clear environment need.”

While InnoVent Renewables has only just launched, Sharma has worked in the space for years with his company InnoVent Technology, a technology and consulting company working with clients on turnkey process technology and asset management solutions within the process and manufacturing industries.

During InnoVent's unique material breakdown process, its pyrolysis technology recovers chemicals from the products, and produces high-quality fuels — in in a net-zero capacity. The company's products include renewable pyrolysis oil, or PyOil; aromatics; recovered carbon black, or rCB; and steel wire. PyOil, according to InnoVent's website, can be sold as fuel oil, off-road diesel, or used as a feedstock to crude blending.

"The InnoVent team conducted product quality analysis in conjunction with a world renowned research facility and results were further validated and scaled up in 2022, using comprehensive process simulation software and pre-engineering design work for scale-up," reads the InnoVent website.

Headquartered in Houston, the company has operations in Pune, India, and Monterrey, Mexico, with plans for aggressive growth across North America and Latin America. Specifically, InnoVent is planning to open a commercial production plant in Monterrey next year. Down the road, the company's team hopes to expand in Europe, the Middle East, and Asia-Pacific.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

1PointFive secures new buyer for Texas CO2 removal project​

seeing green

Houston’s Occidental Petroleum Corp., or Oxy, and its subsidiary 1PointFive have secured another carbon removal credit deal for its $1.3 billion direct air capture (DAC) project, Stratos.

California-based Palo Alto Networks has agreed to purchase 10,000 tons of carbon dioxide removal (CDR) credits over five years from the project, according to a news release.

The company joins others like Microsoft, Amazon, AT&T, Airbus, the Houston Astros and the Houston Texans that have agreed to buy CDR credits from 1Point5.

"Collaborating with 1PointFive in this carbon removal credit agreement highlights our proactive approach toward exploring innovative solutions for a greener future,” BJ Jenkins, president of Palo Alto Networks, said in the release.

The Texas-based Stratos project is slated to come online this year near Odessa. It's being developed through a joint venture with investment manager BlackRock and is designed to capture up to 500,000 metric tons of CO2 per year. The U.S Environmental Protection Agency recently approved Class VI permits for the project.

DAC technology pulls CO2 from the air at any location, not just where carbon dioxide is emitted. Under the agreement with Palo Alto Networks and others, the carbon dioxide that underlies the credits will be stored in a below-the-surface saline aquifer and won’t be used to produce oil or gas.

“We look forward to collaborating with Palo Alto Networks and using Direct Air Capture to help advance their sustainability strategy,” Michael Avery, president and general manager of 1PointFive, said in the release. “This agreement continues to build momentum for high-integrity carbon removal while furthering DAC technology to support energy development in the United States.”

Chevron gets green light on $53 billion Hess acquisition

Mega Deal

Chevron has scored a critical ruling in Paris that has given it the go-ahead for a $53 billion acquisition of Hess and access to one of the biggest oil finds of the decade.

Chevron said Friday that it completed its acquisition of Hess shortly after the ruling from the International Chamber of Commerce in Paris. Exxon had challenged Chevron’s bid for Hess, one of three companies with access to the massive Stabroek Block oil field off the coast of Guyana.

“We disagree with the ICC panel’s interpretation but respect the arbitration and dispute resolution process,” Exxon Mobil said in a statement on Friday.

Guyana is a country of 791,000 people that is poised to become the world’s fourth-largest offshore oil producer, placing it ahead of Qatar, the United States, Mexico and Norway. It has become a major producer in recent years.

Oil giants Exxon Mobil, China’s CNOOC, and Hess squared off in a heated competition for highly lucrative oil fields in northern South America.

With Chevron getting the green light on Friday, it is now one of the major players in the Stabroek.

“We are proud of everyone at Hess for building one of the industry’s best growth portfolios including Guyana, the world’s largest oil discovery in the last 10 years, and the Bakken shale, where we are a leading oil and gas producer,” former Hess CEO John Hess said in a statement. “The strategic combination of Chevron and Hess creates a premier energy company positioned for the future.”

Chevron also said that on Thursday the Federal Trade Commission lifted its earlier restriction, clearing the way for John Hess to join its board of directors, subject to board approval.

Chevron announced its deal for Hess in October 2023, less than two weeks after Exxon Mobil said that it would acquire Pioneer Natural Resources for about $60 billion.

Chevron said at the time that the acquisition of Hess would add a major oil field in Guyana as well as shale properties in the Bakken Formation in North Dakota.

“Given the significant value we’ve created in the development of the Guyana resource, we believed we had a clear duty to our investors to consider our preemption rights to protect the value we created through our innovation and hard work at a time when no one knew just how successful this venture would become,” Exxon Mobil said Friday. “We welcome Chevron to the venture and look forward to continued industry-leading performance and value creation in Guyana for all parties involved.”

Chevron's stock rose more than 3% before the market open, while shares of Hess surged more than 7%. Exxon's stock climbed slightly.

Houston researchers develop strong biomaterial that could replace plastic

plastic problem

Collaborators from two Houston universities are leading the way in engineering a biomaterial into a scalable, multifunctional material that could potentially replace plastic.

The research was led by Muhammad Maksud Rahman, an assistant professor of mechanical and aerospace engineering at the University of Houston and an adjunct assistant professor of materials science and nanoengineering at Rice University. The team shared its findings in a study in the journal Nature Communications earlier this month. M.A.S.R. Saadi, a doctoral student in material science and nanoengineering at Rice, served as the first author.

The study introduced a biosynthesis technique that aligns bacterial cellulose fibers in real-time, which resulted in robust biopolymer sheets with “exceptional mechanical properties,” according to the researchers.

Biomaterials typically have weaker mechanical properties than their synthetic counterparts. However, the team was able to develop sheets of material with similar strengths to some metals and glasses. And still, the material was foldable and fully biodegradable.

To achieve this, the team developed a rotational bioreactor and utilized fluid motion to guide the bacteria fibers into a consistent alignment, rather than allowing them to align randomly, as they would in nature.

The process also allowed the team to easily integrate nanoscale additives—like graphene, carbon nanotubes and boron nitride—making the sheets stronger and improving the thermal properties.

“This dynamic biosynthesis approach enables the creation of stronger materials with greater functionality,” Saadi said in a release. “The method allows for the easy integration of various nanoscale additives directly into the bacterial cellulose, making it possible to customize material properties for specific applications.”

Ultimately, the scientists at UH and Rice hope this discovery could be used for the “next disposable water bottle,” which would be made by biodegradable biopolymers in bacterial cellulose, an abundant resource on Earth.

Additionally, the team sees applications for the materials in the packaging, breathable textiles, electronics, food and energy sectors.

“We envision these strong, multifunctional and eco-friendly bacterial cellulose sheets becoming ubiquitous, replacing plastics in various industries and helping mitigate environmental damage,” Rahman said the release.