full circle

Houston scientist earns nanocarbon research award named after fellow Rice chemist

Bruce Weisman's career has come full circle with a recent award. Photo via rice.edu

Rice University chemist Bruce Weisman has been awarded the Richard E. Smalley Research Award for his decades of nanocarbon research, according to a statement from the university.

The honor is a full circle moment for Wiseman, as the award is named after Weisman's long-time Rice colleague and friend, Rick Smalley, who Wiseman said helped shape his career.

“It changed my career,” Weisman said in a statement from Rice about his work with Smalley. “Everything I’ve done in the last 20 years has been an outgrowth, a consequence of that.”

Still, Weisman has earned many achievements of his own. He joined Rice's faculty in 1979 as a spectroscopist and first began working with Smalley in 1985 after Smalley's groundbreaking discovery of carbon 60, or buckyballs. The discovery proved that carbon could take on other forms and it won Smalley and his teammates the 1996 Nobel Prize in Chemistry.

Weisman and Smalley then collaborated on experiments to measure the electronic spectra of carbon 60 and carbon 70. In the early 2000s, they published two seminal nanotube studies in Science in which Weisman shared his new faster, simpler and cheaper spectrometric method of assaying nanotubes, according to Rice.

In 2004 Weisman founded a company, Applied NanoFluorescence, to commercialize the technology. The company still exists and continues to research the optical properties of carbon nanotubes.

He is also an elected fellow of the American Physical Society, the American Association for the Advancement of Science and the the Electrochemical Society (ECS) and former chair of the ECS Nanocarbons Division. The ECS will present Weisman with the 2024 Smalley Research Award in May. The award is given every two years to recognize “outstanding achievements in, or scientific contributions to, the science of fullerenes, nanotubes and carbon nanostructures.”

Earlier this month, another Rice professor won a highly competitive award. Assistant professor Amanda Marciel, the William Marsh Rice Trustee Chair of chemical and biomolecular engineering, was granted a National Science Foundation's CAREER Award that comes with $670,406 over five years to continue her research in designing branch elastomers.

The grant will also create opportunities in soft matter research for undergraduates and underrepresented scientists. Click here to learn more.

Meanwhile, another Houston-based chemist was also recently recognized for their work. Baylor College of Medicine's Livia Schiavinato Eberlin was named the 2024 recipient of the Norman Hackerman Award in Chemical Research in December.

The award from the Houston-based Welch Foundation recognizes the accomplishments of chemical scientists in Texas who are early in their careers. Eberlin will be granted $100,000 for this honor.

Trending News

A View From HETI

The work is "poised to revolutionize our understanding of fundamental physics," according to Rice University. Photo via Rice.edu

A team of Rice University physicists has been awarded a prestigious grant from the Department of Energy's Office of Nuclear Physics for their work in high-energy nuclear physics and research into a new state of matter.

The five-year $15.5 million grant will go towards Rice physics and astronomy professor Wei Li's discoveries focused on the Compact Muon Solenoid (CMS), a large, general-purpose particle physics detector built on the Large Hadron Collider (LHC) at CERN, a European organization for nuclear research in France and Switzerland. The work is "poised to revolutionize our understanding of fundamental physics," according to a statement from Rice.

Li's team will work to develop an ultra-fast silicon timing detector, known as the endcap timing layer (ETL), that will provide upgrades to the CMS detector. The ETl is expected to have a time resolution of 30 picoseconds per particle, which will allow for more precise time-of-flight particle identification.

This will also help boost the performance of the High-Luminosity Large Hadron Collider (HL-LHC), which is scheduled to launch at CERN in 2029, allowing it to operate at about 10 times the luminosity than originally planned. The ETL also has applications for other colliders apart from the LHC, including the DOE’s electron-ion collider at the Brookhaven National Laboratory in Long Island, New York.

“The ETL will enable breakthrough science in the area of heavy ion collisions, allowing us to delve into the properties of a remarkable new state of matter called the quark-gluon plasma,” Li explained in a statement. “This, in turn, offers invaluable insights into the strong nuclear force that binds particles at the core of matter.”

The ETL is also expected to aid in other areas of physics, including the search for the Higgs particle and understanding the makeup of dark matter.

Li is joined on this work by co-principal investigator Frank Geurts and researchers Nicole Lewis and Mike Matveev from Rice. The team is collaborating with others from MIT, Oak Ridge National Lab, the University of Illinois Chicago and University of Kansas.

Last year, fellow Rice physicist Qimiao Si, a theoretical quantum physicist, earned the prestigious Vannevar Bush Faculty Fellowship grant. The five-year fellowship, with up to $3 million in funding, will go towards his work to establish an unconventional approach to create and control topological states of matter, which plays an important role in materials research and quantum computing.

Meanwhile, the DOE recently tapped three Houston universities to compete in its annual startup competition focused on "high-potential energy technologies,” including one team from Rice.

Trending News