HEXAspec, founded by Tianshu Zhai and Chen-Yang Lin, has been awarded an NSF Partnership for Innovation grant. Photo courtesy of Rice

HEXAspec, a spinout from Rice University's Liu Idea Lab for Innovation and Entrepreneurship, was recently awarded a $500,000 National Science Foundation Partnership for Innovation grant.

The team says it will use the funding to continue enhancing semiconductor chips’ thermal conductivity to boost computing power. According to a release from Rice, HEXAspec has developed breakthrough inorganic fillers that allow graphic processing units (GPUs) to use less water and electricity and generate less heat.

The technology has major implications for the future of computing with AI sustainably.

“With the huge scale of investment in new computing infrastructure, the problem of managing the heat produced by these GPUs and semiconductors has grown exponentially. We’re excited to use this award to further our material to meet the needs of existing and emerging industry partners and unlock a new era of computing,” HEXAspec co-founder Tianshu Zhai said in the release.

HEXAspec was founded by Zhai and Chen-Yang Lin, who both participated in the Rice Innovation Fellows program. A third co-founder, Jing Zhang, also worked as a postdoctoral researcher and a research scientist at Rice, according to HEXAspec's website.

The HEXASpec team won the Liu Idea Lab for Innovation and Entrepreneurship's H. Albert Napier Rice Launch Challenge in 2024. More recently, it also won this year's Energy Venture Day and Pitch Competition during CERAWeek in the TEX-E student track, taking home $25,000.

"The grant from the NSF is a game-changer, accelerating the path to market for this transformative technology," Kyle Judah, executive director of Lilie, added in the release.

---

This article originally ran on InnovationMap.

A team of Texas researchers has landed a nearly $1 million NSF grant to address rural flood management challenges with community input. Photo via Getty Images.

Houston-led project earns $1 million in federal funding for flood research

team work

A team from Rice University, the University of Texas at Austin and Texas A&M University have been awarded a National Science Foundation grant under the CHIRRP—or Confronting Hazards, Impacts and Risks for a Resilient Planet—program to combat flooding hazards in rural Texas.

The grant totals just under $1 million, according to a CHIRRP abstract.

The team is led by Avantika Gori, assistant professor of civil and environmental engineering at Rice. Other members include Rice’s James Doss-Gollin, Andrew Juan at Texas A&M University and Keri Stephens at UT Austin.

Researchers from Rice’s Severe Storm Prediction, Education and Evacuation from Disasters Center and Ken Kennedy Institute, Texas A&M’s Institute for A Disaster Resilient Texas and the Technology & Information Policy Institute at UT Austin are part of the team as well.

Their proposal includes work that introduces a “stakeholder-centered framework” to help address rural flood management challenges with community input.

“Our goal is to create a flood management approach that truly serves rural communities — one that’s driven by science but centers around the people who are impacted the most,” Gori said in a news release.

The project plans to introduce a performance-based system dynamics framework that integrates hydroclimate variability, hydrology, machine learning, community knowledge, and feedback to give researchers a better understanding of flood risks in rural areas.

The research will be implemented in two rural Texas areas that struggle with constant challenges associated with flooding. The case studies aim to demonstrate how linking global and regional hydroclimate variability with local hazard dynamics can work toward solutions.

“By integrating understanding of the weather dynamics that cause extreme floods, physics-based models of flooding and AI or machine learning tools together with an understanding of each community’s needs and vulnerabilities, we can better predict how different interventions will reduce a community’s risk,” Doss-Gollin said in a news release.

At the same time, the project aims to help communities gain a better understanding of climate science in their terms. The framework will also consider “resilience indicators,” such as business continuity, transportation access and other features that the team says more adequately address the needs of rural communities.

“This work is about more than flood science — it’s also about identifying ways to help communities understand flooding using words that reflect their values and priorities,” said Stephens. “We’re creating tools that empower communities to not only recover from disasters but to thrive long term.”

Research from Rice University of 20 U.S. cities shows that income was linked to who benefits most from public EV infrastructure. Photo by Andrew Roberts/Unsplash

Houston researcher dives into accessibility of public EV charging stations

EV equity

A Rice University professor wants to redraw the map for the placement of electric vehicle charging stations to level the playing field for access to EV power sources.

Xinwu Qian, assistant professor of civil and environmental engineering at Rice, is leading research to rethink where EV charging stations should be installed so that they’re convenient for all motorists going about their day-to-day activities.

“Charging an electric vehicle isn’t just about plugging it in and waiting — it takes 30 minutes to an hour even with the fastest charger — therefore, it’s an activity layered with social, economic, and practical implications,” Qian says on Rice’s website. “While we’ve made great strides in EV adoption, the invisible barriers to public charging access remain a significant challenge.”

According to Qian’s research, public charging stations are more commonly located near low-income households, as these residents are less likely to afford or enjoy access to at-home charging. However, these stations are often far from where they conduct everyday activities.

The Rice report explains that, in contrast, public charging stations are geographically farther from affluent suburban areas. However, they often fit more seamlessly into these residents' daily schedules. As a result, low-income communities face an opportunity gap, where public charging may exist in theory but is less practical in reality.

A 2024 study led by Qian analyzed data from over 28,000 public EV charging stations and 5.5 million points across 20 U.S. cities.

“The findings were stark: Income, rather than proximity, was the dominant factor in determining who benefits most from public EV infrastructure,” Qian says.

“Wealthier individuals were more likely to find a charging station at places they frequent, and they also had the flexibility to spend time at those places while charging their vehicles,” he adds. “Meanwhile, lower-income communities struggled to integrate public charging into their routines due to a compounded issue of shorter dwell times and less alignment with daily activities.”

To make matters worse, businesses often target high-income people when they install charging stations, Qian’s research revealed.

“It’s a sad reality,” Qian said. “If we don’t address these systemic issues now, we risk deepening the divide between those who can afford EVs and those who can’t.”

A grant from the National Science Foundation backs Qian’s further research into this subject. He says the public and private sectors must collaborate to address the inequity in access to public charging stations for EVs.

Decades of research have culminated in the creation of the Water Technologies Entrepreneurship and Research (WaTER) Institute at Rice University. Photo via Pexels

Rice University researchers pioneer climatetech breakthroughs in clean water nanotechnology

tapping in

Researchers at Rice University are making cleaner water through the use of nanotech.

Decades of research have culminated in the creation of the Water Technologies Entrepreneurship and Research (WaTER) Institute launched in January 2024 and its new Rice PFAS Alternatives and Remediation Center (R-PARC).

“Access to safe drinking water is a major limiting factor to human capacity, and providing access to clean water has the potential to save more lives than doctors,” Rice’s George R. Brown Professor of Civil and Environmental Engineering Pedro Alvarez says in a news release.

The WaTER Institute has made advancements in clean water technology research and applications established during a 10-year period of Nanotechnology Enabled Water Treatment (NEWT), which was funded by the National Science Foundation. R-PARC will use the institutional investments, which include an array of PFAS-dedicated advanced analytical equipment.

Alvarez currently serves as director of NEWT and the WaTER Institute. He’s joined by researchers that include Michael Wong, Rice’s Tina and Sunit Patel Professor in Molecular Nanotechnology, chair and professor of chemical and biomolecular engineering and leader of the WaTER Institute’s public health research thrust, and James Tour, Rice’s T.T. and W.F. Chao Professor of Chemistry and professor of materials science and nanoengineering.

“We are the leaders in water technologies using nano,” adds Wong. “Things that we’ve discovered within the NEWT Center, we’ve already started to realize will be great for real-world applications.”

The NEWT center plans to equip over 200 students to address water safety issues, and assist/launch startups.

“Across the world, we’re seeing more serious contamination by emerging chemical and biological pollutants, and climate change is exacerbating freshwater scarcity with more frequent droughts and uncertainty about water resources,” Alvarez said in a news release. “The Rice WaTER Institute is growing research and alliances in the water domain that were built by our NEWT Center.”

———

This article originally ran on InnovationMap.

OpenSafe.AI, a new platform that utilizes AI, data, and hazard and resilience models to support storm response decision makers, has secured an NSF grant. Photo via Getty Images

Houston-area researchers score $1.5M grant to develop storm response tech platform

fresh funding

Researchers from Rice University have secured a $1.5 million grant from the National Science Foundation to continue their work on improving safety and resiliency of coastal communities plagued by flooding and hazardous weather.

The Rice team of engineers and collaborators includes Jamie Padgett, Ben Hu, and Avantika Gori along with David Retchless at Texas A&M University at Galveston. The researchers are working in collaboration with the Severe Storm Prediction, Education and Evacuation from Disasters (SSPEED) Center and the Ken Kennedy Institute at Rice and A&M-Galveston’s Institute for a Disaster Resilient Texas.

Together, the team is developing and hopes to deploy “Open-Source Situational Awareness Framework for Equitable Multi-Hazard Impact Sensing using Responsible AI,” or OpenSafe.AI, a new platform that utilizes AI, data, and hazard and resilience models "to provide timely, reliable and equitable insights to emergency response organizations and communities before, during and after tropical cyclones and coastal storm events," reads a news release from Rice.

“Our goal with this project is to enable communities to better prepare for and navigate severe weather by providing better estimates of what is actually happening or might happen within the next hours or days,” Padgett, Rice’s Stanley C. Moore Professor in Engineering and chair of the Department of Civil and Environmental Engineering, says in the release. “OpenSafe.AI will take into account multiple hazards such as high-speed winds, storm surge and compound flooding and forecast their potential impact on the built environment such as transportation infrastructure performance or hazardous material spills triggered by severe storms.”

OpenSafe.AI platform will be developed to support decision makers before, during, and after a storm.

“By combining cutting-edge AI with a deep understanding of the needs of emergency responders, we aim to provide accurate, real-time information that will enable better decision-making in the face of disasters,” adds Hu, associate professor of computer science at Rice.

In the long term, OpenSafe.AI hopes to explore how the system can be applied to and scaled in other regions in need of equitable resilience to climate-driven hazards.

“Our goal is not only to develop a powerful tool for emergency response agencies along the coast but to ensure that all communities ⎯ especially the ones most vulnerable to storm-induced damage ⎯ can rely on this technology to better respond to and recover from the devastating effects of coastal storms,” adds Gori, assistant professor of civil and environmental engineering at Rice.

University of Houston professor Xiaonan Shan and the rest of his research team are celebrating fresh funding from a federal grant. Photo via UH.edu

Houston scientists land $1M NSF funding for AI-powered clean energy project

A team of scientists from the University of Houston, in collaboration with Howard University in Washington D.C., has received a $1 million award from the National Science Foundation for a project that aims to automate the discovery of new clean-energy catalysts.

The project, dubbed "Multidisciplinary High-Performance Computing and Artificial Intelligence Enabled Catalyst Design for Micro-Plasma Technologies in Clean Energy Transition," aims to use machine learning and AI to improve the efficiency of catalysts in hydrogen generation, carbon capture and energy storage, according to UH.

“This research directly contributes to these global challenges,” Jiefu Chen, the principal investigator of the project and associate professor of electrical and computer engineering, said in a statement. “This interdisciplinary effort ensures comprehensive and innovative solutions to complex problems.”

Chen is joined by Lars Grabow, professor of chemical and biomolecular engineering; Xiaonan Shan, associate professor of electrical and computing engineering; and Xuquing Wu, associate professor of information science technology. Su Yan, an associate professor of electrical engineering and computer science at Howard University, is collaborating on the project.

The University of Houston team: Xiaonan Shan, associate professor electrical and computing engineering, Jiefu Chen, associate professor of electrical and computer engineering, Lars Grabow, professor of chemical and biomolecular engineering, and Xuquing Wu, associate professor of information science technology. Photo via UH.edu

The team will create a robotic synthesis and testing facility that will automate the experimental testing and verification process of the catalyst design process, which traditionally is slow-going. It will implement AI and advanced, unsupervised machine learning techniques, and have a special focus on plasma reactions.

The project has four main focuses, according to UH.

  1. Using machine learning to discover materials for plasma-assisted catalytic reactions
  2. Developing a model to simulate complex interactions to better understand microwave-plasma-assisted heating
  3. Designing catalysts supports for efficient microwave-assisted reactions
  4. Developing a bench scale reactor to demonstrate the efficiency of the catalysts support system

Additionally, the team will put the funding toward the development of a multidisciplinary research and education program that will train students on using machine learning for topics like computational catalysis, applied electromagnetics and material synthesis. The team is also looking to partner with industry on related projects.

“This project will help create a knowledgeable and skilled workforce capable of addressing critical challenges in the clean energy transition,” Grabow added in a statement. “Moreover, this interdisciplinary project is going to be transformative in that it advances insights and knowledge that will lead to tangible economic impact in the not-too-far future.”

This spring, UH launched a new micro-credential course focused on other applications for AI and robotics in the energy industry.

Around the same time, Microsoft's famous renowned co-founder Bill Gates spoke at CERAWeek to a standing-room-only crowd on the future of the industry. Also founder of Breakthrough Energy, Gates addressed the topic of AI.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

7 innovative startups fueling the energy transition in Houston

Meet the Innovators

Houston has long been touted as the energy capital of the world, and it's now it's also a leading player in the energy transition — home to numerous startups and innovators working toward a cleaner future.

As part of the 2025 Houston Innovation Awards, presented by InnovationMap, the Energy Transition Business category honors innovative startups that are providing solution within renewables, climatetech, clean energy, alternative materials, circular economy, and more.

Seven energy transition companies have been named finalists for the 2025 award. They range from a spinoff stimulating subsurface hydrogen from end-of-life oil fields to a company converting prickly pear cactus biogas into energy.

Read more about these climatetech businesses, their founders, and their green initiatives below. Then join us at the Houston Innovation Awards on Nov. 13 at Greentown Labs, when the winner will be unveiled at our live awards ceremony.

Tickets are now on sale.

Anning Corporation

Clean energy company Anning Corporation is working to develop geologic hydrogen, a natural carbon-free fuel, using its proprietary stimulation approaches and advanced exploration modeling. The company said that geologic hydrogen has the potential to be the lowest-cost source of reliable baseload electricity in the U.S.

The company was founded by CEO Sophie Broun in 2024 and is a member of Greentown Labs. Last month, it also announced that it was chosen to participate in Breakthrough Energy’s prestigious Fellows Program. Anning raised a pre-seed round this year and is currently raising a $6 million seed round.

Capwell Services

Houston-based methane capture company Capwell Services works to eliminate vented oil and gas emissions economically for operators. According to the company, methane emissions are vented from most oil and gas facilities due to safety protocols, and operators are not able to capture the gas cost-effectively, leading operators to emit more than 14 million metric tons of methane per year in the U.S. and Canada. Founded in 2022, Capwell specializes in low and intermittent flow vents for methane capture.

The company began as a University of Pennsylvania senior design project led by current CEO Andrew Lane. It has since participated in programs with Greentown Labs and Rice Clean Energy Accelerator. The company moved to Houston in 2023 and raised a pre-seed round. It has also received federal funding from the DOE. Capwell is currently piloting its commercial unit with oil and gas operators.

Deep Anchor Solutions

Offshore energy consulting and design company Deep Anchor Solutions aims to help expedite the adoption of floating offshore energy infrastructure with its deeply embedded ring anchor (DERA) technology. According to the company, its patented DERA system can be installed quietly without heavy-lift vessels, reducing anchor-related costs by up to 75 percent and lifecycle CO2 emissions by up to 80 percent.

The company was founded in 2023 by current CEO Junho Lee and CTO Charles Aubeny. Lee earned his Ph.D. in geotechnical engineering from Texas A&M University, where Aubeny is a professor of civil and environmental engineering. The company has participated in numerous accelerators and incubators, including Greentown Labs, MassChallenge, EnergyTech Nexus LiftOff, and others. Lee is an Activate 2025 fellow.

Eclipse Energy

Previously known as Gold H2, Eclipse Energy converts end-of-life oil fields into low-cost, sustainable hydrogen sources. It completed its first field trial this summer, which demonstrated subsurface bio-stimulated hydrogen production. According to the company, its technology could yield up to 250 billion kilograms of low-carbon hydrogen, which is estimated to provide enough clean power to Los Angeles for over 50 years and avoid roughly 1 billion metric tons of CO2 equivalent.

Eclipse is a spinoff of Houston biotech company Cemvita. It was founded in 2022 by Moji Karimi (CEO and chairman of Cemvita), Prabhdeep Sekhon (CEO of Eclipse), Tara Karimi, and Rayyan Islam. The company closed an $8 million series A this year and has plans to raise another round in 2026.

Loop Bioproducts

Agricultural chemical manufacturing company Loop Bioproducts leverages the physiology of prickly pear cactus grown in Texas to produce bioenergy, food, and remediate industrial wastewater streams. The company uses its remote sensing technology, proprietary image-based machine learning model, and R&D innovation to capture raw biogas from the cactuses and is focused on scaling cactuses as an industrial crop on land.

Rhiannon Parker founded Loop Bioproducts in 2023.

Mars Materials

Clean chemical manufacturing business Mars Materials is working to convert captured carbon into resources, such as carbon fiber and wastewater treatment chemicals. The company develops and produces its drop-in chemical products in Houston and uses an in-licensed process for the National Renewable Energy Lab to produce acrylonitrile, which is used to produce plastics, synthetic fibers, and rubbers. The company reports that it plans to open its first commercial plant in the next 18 months.

Founded in 2019 by CEO Aaron Fitzgerald, CTO Kristian Gubsch, and lead engineer Trey Sheridan, the company has raised just under $1 million in capital and is backed by Bill Gates’ Breakthrough Energy, Shell, Black & Veatch, and other organizations.

Solidec

Chemical manufacturing company Solidec has developed autonomous generators that extract molecules from water and air and converts them into pure chemicals and fuels that are free of carbon emissions onsite, eliminating the need for transport, storage, and permitting. The company was founded around innovations developed by Rice University associate professor Haotian Wang.

The company was selected for the Chevron Technology Ventures’ catalyst program, Greentown Labs, NSF I-Corps and was part of the first cohort of the Activate Houston program. It won first place at the 2024 startup pitch competition at CERAWeek. Solidec was founded in 2023 by Wang, who serves as chief scientist, CEO Ryan DuChanois, and CTO Yang Xia. It closed a $2.5 million seed round earlier this year.

-----

The Houston Innovation Awards program is sponsored by Houston Community College, Houston Powder Coaters, FLIGHT by Yuengling, and more to be announced soon. For sponsorship opportunities, please contact sales@innovationmap.com.

New report rates best electric companies and renewable energy plans

energy plans

Choose Texas Power—a marketplace that allows users to view and compare electricity plans, providers and rates in the state—has compiled its Best Texas Electric Companies report.

The data-driven list considers pricing, providers and consumer trends, and rates for companies listed on its marketplace. The report was updated earlier this month.

Choose Texas Power rated the Texas energy companies using its proprietary data and online reviews, and gave each company a score from zero to five based on customer service, accessibility and plan variety.

Houston-based Express Energy tied for first place on the list with DFW-based TXU Energy, 4Change Energy and Veteran Energy. Eight other Houston-area companies made the 10. The companies all received a rating of 5 out of 5.

The full list includes:

  • Houston-based Gexa Energy (4.9)
  • Irving-based TriEagle Energy (4.9)
  • Houston-based Frontier Utilities (4.8)
  • Spring-based Atlantex Power (4.6)
  • Houston-based Rhythm Energy (4.6)
  • Houston-based Green Mountain Energy (4.5)
  • Houston-based Reliant Energy (4.3)
  • Houston-based Direct Energy (4.2)
  • Houston-based APG&E Energy (4.2)
  • Houston-based Discount Power (4)
  • Plano-based Cirro Energy (4)
  • Fort Worth-based Payless Power (3.9)

Choose Texas Power also broke down the best companies for specific customer needs.

  • Best for affordable green energy: Gexa Energy
  • Best for 100% renewable energy: Rhythm Energy
  • Green energy plans for low usage: Green Mountain Energy
  • Best for smart home upgrades: Discount Power
  • Best for straightforward energy plans: TriEagle Energy
  • Best for plan variety: TXU Energy
  • Best for simple contract terms: Express Energy

Find the full report here.

Chevron names latest cohort of energy transition fellows at Rice University

energy fellowship

Chevron and Rice University have named 10 graduate students to the second cohort of the Chevron Energy Graduate Fellowship.

The students come from various departments at Rice and are working on innovations that reduce emissions or improve upon low-carbon technology. Fellows will each receive a $10,000 award to support their research along with the opportunity to connect with "industry experts who can provide valuable insight on scaling technologies from the lab to commercial application," according to Rice.

The fellows will present projects during a cross-university virtual symposium in the spring.

The 2025-26 Chevron Energy Graduate Fellows and their research topics include:

  • Cristel Carolina Brindis Flores, Molecular Simulations of CO₂ and H₂ for Geostorage
  • Davide Cavuto, Intensification of Floating Catalyst Chemical Vapor Deposition for Carbon Nanotubes Synthesis
  • Jaewoo Kim, Distributed Acoustic Sensing for In-situ Stress Monitoring in Enhanced Geothermal Systems
  • Jessica Hema Persaud, Understanding Tin Perovskite Crystallization Dynamics for All-Perovskite Tandems
  • Johanna Ikabu Bangala, Upcycling Methane-derived Zero-Valent Carbon for Sustainable Agriculture
  • Kashif Liaqat, From Waste to Resource: Increased Sustainability Through Hybrid Waste Heat Recovery Systems for Data Centers and Industry
  • Md Abid Shahriar Rahman Saadi, Advancing Sustainable Structural, Energy and Food Systems through Engineering of Biopolymers
  • Ratnika Gupta, Micro-Silicon/Carbon Nanotube Composite Anodes with Metal-free Current Collector for High Performance Li-Ion Batteries
  • Wei Ping Lam, Electrifying Chemical Manufacturing: High-Pressure Electrochemical CO₂ Capture and Conversion
  • William Schmid, Light-Driven Thermal Desalination Using Transient Solar Illumination

“Through this fellowship program, we can support outstanding graduate students from across the university who are conducting cutting-edge research across a variety of fields,” Carrie Masiello, director of the Rice Sustainability Institute, said in a news release. “This year, our 2026 Chevron Fellows are working on research that reflects the diversity of the sustainability research at Rice … and these scholarly endeavors exemplify the breadth and depth of research enabled by Chevron’s generous support.”

The Chevron Fellows program launched at Rice last year, naming 10 graduate students to the inaugural cohort. It is funded by Chevron and was created through a partnership between the Rice Sustainability Institute. Chevron launched a similar program at the University of Houston in 2023.

“Rice University continues to be an exceptional partner in advancing energy innovation,” Chris Powers, director of exploration commercial and portfolio at Chevron, added in the release. “The Chevron Energy Fellows program showcases the brilliance and drive of Rice graduate students, whose research in areas like carbon conversion, solar materials and geothermal sensing is already shaping the future of sustainable energy. We’re proud to celebrate their achievements and look forward to the impact they’ll continue to make across the energy landscape.”