The UH team is developing ways to use machine learning to ensure that power systems can continue to run efficiently when pulling their energy from wind and solar sources. Photo via Getty Images

An associate professor at the University of Houston received the highly competitive National Science Foundation CAREER Award earlier this month for a proposal focused on integrating renewable resources to improve power grids.

The award grants more than $500,000 to Xingpeng Li, assistant professor of electrical and computer engineering and leader of the Renewable Power Grid Lab at UH, to continue his work on developing ways to use machine learning to ensure that power systems can continue to run efficiently when pulling their energy from wind and solar sources, according to a statement from UH. This work has applications in the events of large disturbances to the grid.

Li explains that currently, power grids run off of converted, stored kinetic energy during grid disturbances.

"For example, when the grid experiences sudden large generation losses or increased electrical loads, the stored kinetic energy immediately converted to electrical energy and addressed the temporary shortfall in generation,” Li said in a statement. “However, as the proportion of wind and solar power increases in the grid, we want to maximize their use since their marginal costs are zero and they provide clean energy. Since we reduce the use of those traditional generators, we also reduce the power system inertia (or stored kinetic energy) substantially.”

Li plans to use machine learning to create more streamlined models that can be implemented into day-ahead scheduling applications that grid operators currently use.

“With the proposed new modeling and computational approaches, we can better manage grids and ensure it can supply continuous quality power to all the consumers," he said.

In addition to supporting Li's research and model creations, the funds will also go toward Li and his team's creation of a free, open-source tool for students from kindergarten up through their graduate studies. They are also developing an “Applied Machine Learning in Power Systems” course. Li says the course will help meet workforce needs.

The CAREER Award recognizes early-career faculty members who “have the potential to serve as academic role models in research and education and to lead advances in the mission of their department or organization,” according to the NSF. It's given to about 500 researchers each year.

Earlier this year, Rice assistant professor Amanda Marciel was also granted an NSF CAREER Award to continue her research in designing branch elastomers that return to their original shape after being stretched. The research has applications in stretchable electronics and biomimetic tissues.
Bruce Weisman's career has come full circle with a recent award. Photo via rice.edu

Houston scientist earns nanocarbon research award named after fellow Rice chemist

full circle

Rice University chemist Bruce Weisman has been awarded the Richard E. Smalley Research Award for his decades of nanocarbon research, according to a statement from the university.

The honor is a full circle moment for Wiseman, as the award is named after Weisman's long-time Rice colleague and friend, Rick Smalley, who Wiseman said helped shape his career.

“It changed my career,” Weisman said in a statement from Rice about his work with Smalley. “Everything I’ve done in the last 20 years has been an outgrowth, a consequence of that.”

Still, Weisman has earned many achievements of his own. He joined Rice's faculty in 1979 as a spectroscopist and first began working with Smalley in 1985 after Smalley's groundbreaking discovery of carbon 60, or buckyballs. The discovery proved that carbon could take on other forms and it won Smalley and his teammates the 1996 Nobel Prize in Chemistry.

Weisman and Smalley then collaborated on experiments to measure the electronic spectra of carbon 60 and carbon 70. In the early 2000s, they published two seminal nanotube studies in Science in which Weisman shared his new faster, simpler and cheaper spectrometric method of assaying nanotubes, according to Rice.

In 2004 Weisman founded a company, Applied NanoFluorescence, to commercialize the technology. The company still exists and continues to research the optical properties of carbon nanotubes.

He is also an elected fellow of the American Physical Society, the American Association for the Advancement of Science and the the Electrochemical Society (ECS) and former chair of the ECS Nanocarbons Division. The ECS will present Weisman with the 2024 Smalley Research Award in May. The award is given every two years to recognize “outstanding achievements in, or scientific contributions to, the science of fullerenes, nanotubes and carbon nanostructures.”

Earlier this month, another Rice professor won a highly competitive award. Assistant professor Amanda Marciel, the William Marsh Rice Trustee Chair of chemical and biomolecular engineering, was granted a National Science Foundation's CAREER Award that comes with $670,406 over five years to continue her research in designing branch elastomers.

The grant will also create opportunities in soft matter research for undergraduates and underrepresented scientists. Click here to learn more.

Meanwhile, another Houston-based chemist was also recently recognized for their work. Baylor College of Medicine's Livia Schiavinato Eberlin was named the 2024 recipient of the Norman Hackerman Award in Chemical Research in December.

The award from the Houston-based Welch Foundation recognizes the accomplishments of chemical scientists in Texas who are early in their careers. Eberlin will be granted $100,000 for this honor.

Rice University engineers and collaborators developed a technology that converts light into electricity. Photo by Jeff Fitlow/Rice University

Houston research team develops breakthrough process for light-harvesting crystals in DOE-backed project

solar success

A team of Rice researchers have developed a breakthrough synthesis process for developing light-harvesting materials that can be used in solar cells to convert light into electricity.

Detailed in an October study in Nature Synthesis, the new process is able to more closely control the temperature and time of the crystallization process to create 2D halide perovskites with semiconductor layers of “ideal thickness and purity,” according to a release from Rice.

The process, known as kinetically controlled space confinement, was developed by Rice University chemical and biomolecular engineer Aditya Mohite, along with others at Northwestern University, the University of Pennsylvania and the University of Rennes. The research was backed by the Department of Energy, the Army Research Office, the National Science Foundation and a number of other organizations.

“This research breakthrough is critical for the synthesis of 2D perovskites, which hold the key to achieving commercially relevant stability for solar cells and for many other optoelectronic device applications and fundamental light matter interactions,” Mohite said in a statement.

Traditional synthesis methods for creating 2D halide perovskites, which have been shown to offer a high-performance low-cost way to produce solar cells, have generated uneven crystal growth when attempting to reach a higher n value. And uneven crystal growth can result in a less reliable material, while a high n value can result in higher electrical conductivity, among other benefits.

The study shows how the kinetically controlled space confinement method can gradually increase n values in 2D halide perovskites, which will assist in the production of crystals with a certain thickness.

“We designed a way to slow down the crystallization and tune each kinetics parameter gradually to hit the sweet spot for phase-pure synthesis,” Jin Hou, a Ph.D. student at Rice and a lead author on a study, said in a statement.

The process is expected to improve the stability and lower the costs of emerging technologies in optoelectronics, or the study and application of light-emitting or light-detecting devices, and photovoltaics, the conversion of thermal energy into electricity.

"This work pushes the boundaries of higher quantum well 2D perovskites synthesis, making them a viable and stable option for a variety of applications,” Hou added.

Houston universities have been making major strides relating to crystallization processes in recent months.

In September, the University of Houston announced The Welch Foundation awarded its inaugural $5 million Catalyst for Discovery Program Grant to establish the Welch Center for Advanced Bioactive Materials Crystallization. The center will build upon UH professor Jeffrey Rimer's work relating to the use of crystals to help treat malaria and kidney stones.

Over the summer, a team of researchers at UH also published a paper detailing their discovery of how to use molecular crystals to capture large quantities of iodine, one of the most common products of radioactive fission, which is used to create nuclear energy.
A Rice University study will consider how "design strategies aimed at improving civic engagement in stormwater infrastructure could help reduce catastrophic flooding." Photo via Getty Images

Houston university to lead new NSF-back flooding study

risk mitigation

Houston will be the setting of a new three-year National Science Foundation-funded study that focuses on a phenomenon the city is quite familiar with: flooding.

Conducted by Rice University, the study will consider how "design strategies aimed at improving civic engagement in stormwater infrastructure could help reduce catastrophic flooding," according to a statement.

The team will begin its research in the Trinity/Houston Gardens neighborhood and will implement field research, participatory design work and hydrological impact analyses.

Rice professor of anthropology Dominic Boyer and Rice's Gus Sessions Wortham Professor of Architecture Albert Pope are co-principal investigators on the study. They'll be joined by Phil Bedient, director of the Severe Storm Prediction, Education and Evacuation from Disasters Center at Rice, and Jessica Eisma, a civil engineer at the University of Texas at Arlington.

According to Boyer, the study will bring tougher researchers from across disciplines as well as community members and even elementary-aged students.

"Our particular focus will be on green stormwater infrastructure—techniques like bioswale, green roofs and rain gardens—that are more affordable than conventional concrete infrastructure and ones where community members can be more directly involved in the design and implementation phases,” Boyer said. “We envision helping students and other community members design and complete projects like community rain gardens that offer a variety of beneficial amenities and can also mitigate flooding.”

Rice's Severe Storm Prediction, Education and Evacuation from Disasters Center, or SSPEED Center, is a leader in flood mitigation research and innovation.

In 2021, the center developed its FIRST radar-based flood assessment, mapping, and early-warning system based on more than 350 maps that simulate different combinations of rainfall over various areas of the watershed. The system was derived from the Rice/Texas Medical Center Flood Alert System (FAS), which Bedient created 20 years ago. Click here to read more.

Houston is in the running to receive millions from a program from the National Science Foundation. Photo via Getty Images

Houston named semifinalist for major NSF energy transition funding opportunity

ON TO THE NEXT ROUND

The National Science Foundation announced 34 semifinalists for a regional innovation program that will deploy up to $160 million in federal funding over the next 10 years. Among the list of potential regions to receive this influx of capital is Houston.

The Greater Houston Partnership and the Houston Energy Transition Initiative developed the application for the NSF Regional Innovation Engine competition in collaboration with economic, civic, and educational leaders from across the city and five regional universities, including the University of Houston, The University of Texas at Austin, Texas Southern University, Rice University, and Texas A&M University.

The proposed project for Houston — called the Accelerating Carbon-Neutral Technologies and Policies for Energy Transition, or ACT, Engine — emphasizes developing sustainable and equitable opportunities for innovators and entrepreneurs while also pursuing sustainable and equitable energy access for all.

“The ACT Engine will leverage our diverse energy innovation ecosystem and talent, creating a true competitive advantage for existing and new energy companies across our region," says Jane Stricker, senior vice president of energy transition and executive director for HETI, in a statement. "Texas is leading the way in nearly every energy and energy transition solution, and this Engine can catalyze our region’s continued growth in low-carbon technology development and deployment."

If Houston's proposal is selected as a finalist, it could receive up to $160 million over 10 years. The final list of NSF Engines awards is expected this fall, and, according to a release, each awardee will initially receiving about $15 million for the first two years.

"Each of these NSF Engines semifinalists represents an emerging hub of innovation and lends their talents and resources to form the fabric of NSF's vision to create opportunities everywhere and enable innovation anywhere," NSF Director Sethuraman Panchanathan says in a news release. "These teams will spring ideas, talent, pathways and resources to create vibrant innovation ecosystems all across our nation."

The NSF selected its 34 semifinalists from 188 original applicants, and the next step for Houston is a virtual site visit that will assess competitive advantages, budget and resource plans for R&D and workforce development, and the proposed leadership’s ability to mobilize plans into action over the first two years.

"Houston is poised, like no other city, to lead the energy transition. The ACT Engine presents a remarkable opportunity to not only leverage the region's unparalleled energy resources and expertise but also harness our can-do spirit. Houston has a proven track record of embracing challenges and finding innovative solutions,” says Renu Khator, president of the University of Houston, in the statement. “Through the collaborative efforts facilitated by the ACT Engine, I am confident that we can make significant strides towards creating a sustainable future that harmonizes economic growth, environmental protection and social equity."

NSF Engines will announce awards this fall after a round of in-person interviews of finalists named in July. With Houston's track record for building thriving industry hubs in energy, health care, aerospace, and the culinary arts, the region is eager to establish the next generation of leaders and dreamers responding to some of the greatest economic and societal challenges ever seen in America.

“Our energy innovation ecosystem is inclusive, dynamic, and fast growing," says Barbara Burger, energy transition adviser and former Chevron executive, in the release. "The ACT Engine has the potential to increase the amount of innovation coming into the ecosystem and the capabilities available to scale technologies needed in the energy transition. I am confident that the members of the ecosystem — incubators, accelerators, investors, universities, and corporates — are ready for the challenge that the ACT Engine will provide."

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Things to know: Beryl in the rearview, Devon Energy's big deal, and events not to miss

taking notes

Editor's note: Dive headfirst into the new week with three quick things to catch up on in Houston's energy transition.

Hurricane Beryl's big impact

Hundreds of thousands of people in the Houston area likely won’t have power restored until this week, as the city swelters in the aftermath of Hurricane Beryl.

The storm slammed into Texas on July 8, knocking out power to nearly 2.7 million homes and businesses and leaving huge swaths of the region in the dark and without air conditioning in the searing summer heat.

Although repairs have restored power to nearly 1.4 million customers, the scale of the damage and slow pace of recovery has put CenterPoint Energy, which provides electricity to the nation's fourth-largest city, under mounting scrutiny over whether it was sufficiently prepared for the storm and is doing enough now to make things right.

Some frustrated residents have also questioned why a part of the country that is all too familiar with major storms has been hobbled by a Category 1 hurricane, which is the weakest kind. But a storm's wind speed, alone, doesn't determine how dangerous it can be. Click here to continue reading this article from the AP.

Big deal: Devon Energy to acquire Houston exploration, production biz in $5B deal

Devon Energy is buying Grayson Mill Energy's Williston Basin business in a cash-and-stock deal valued at $5 billion as consolidation in the oil and gas sector ramps up.

The transaction includes $3.25 billion in cash and $1.75 billion in stock.

Grayson Mill Energy, based in Houston, is an oil and gas exploration company that received an initial investment from private equity firm EnCap Investments in 2016.

The firm appears to be stepping back from energy sector as it sells off assets. Last month EnCap-backed XCL Resources sold its Uinta Basin oil and gas assets to SM Energy Co. and Northern Oil and Gas in a transaction totaling $2.55 billion. EnCap had another deal in June as well, selling some assets to Matador Resources for nearly $2 billion. Click here to continue reading.

Events not to miss

Put these Houston-area energy-related events on your calendar.

  • 2024 Young Leaders Institute: Renewable Energy and Climate Solutions is taking place July 15 to July 19 at Asia Society of Texas. Register now.
  • CCS/Decarbonization Project Development, Finance and Investment, taking place July 23 to 25, is the deepest dive into the economic and regulatory factors driving the success of the CCS/CCUS project development landscape. Register now.
  • The 5th Texas Energy Forum 2024, organized by U.S. Energy Stream, will take place on August 21 and 22 at the Petroleum Club of Houston. Register now.

Growing Houston biotech company expands leadership as it commercializes sustainable products

onboarding

Houston-based biotech company Cemvita recently tapped two executives to help commercialize its sustainable fuel made from carbon waste.

Nádia Skorupa Parachin came aboard as vice president of industrial biotechnology, and Phil Garcia was promoted to vice president of commercialization.

Parachin most recently oversaw several projects at Boston-based biotech company Ginkjo Bioworks. She previously co-founded Brazilian biotech startup Integra Bioprocessos.

Parachin will lead the Cemvita team that’s developing technology for production of bio-manufactured oil.

“It’s a fantastic moment, as we’re poised to take our prototyping to the next level, and all under the innovative direction of our co-founder Tara Karimi,” Parachin says in a news release. “We will be bringing something truly remarkable to market and ensuring it’s cost-effective.”

Moji Karimi, co-founder and CEO of Cemvita, says the hiring of Parachin represents “the natural next step” toward commercializing the startup’s carbon-to-oil process.

“Her background prepared her to bring the best out of the scientists at the inflection point of commercialization — really bringing things to life,” says Moji Karimi, Tara’s brother.

Parachin joins Garcia on Cemvita’s executive team.

Before being promoted to vice president of commercialization, Garcia was the startup’s commercial director and business development manager. He has a background in engineering and business development.

Founded in 2017, Cemvita recently announced a breakthrough that enables production of large quantities of oil derived from carbon waste.

In 2023, United Airlines agreed to buy up to one billion gallons of sustainable aviation fuel from Cemvita’s first full-scale plant over the course of 20 years.

Cemvita’s investors include the UAV Sustainable Flight Fund, an investment arm of Chicago-based United; Oxy Low Carbon Ventures, an investment arm of Houston-based energy company Occidental Petroleum; and Japanese equipment and machinery manufacturer Mitsubishi Heavy Industries.

New talent-packed TV show taps into Texas oil boom history

spotlight on TX

A new television show that's slated to premiere this fall will put Texas' oil boom on center stage.

Taylor Sheridan's buzzy new Texas-based series Landman will premiere Sunday, November 17, on Paramount+, the network revealed. That's just one week after the November 10 debut of the final episodes of Sheridan's Yellowstone on Paramount.

Landmanwill launch with two episodes, with subsequent ones dropping weekly on Sundays, a news release says. In total, the first season will be 10 episodes long. The series is based on Texas Monthly's acclaimed podcast Boomtown by West Texas-raised journalist Christian Wallace, which aired from late 2019 to early 2020. Wallace is serving as a consultant and writer on the series.

"Set in the proverbial boomtowns of West Texas, Landman is a modern-day tale of fortune seeking in the world of oil rigs," the show's release says. "Based on the notable 11-part podcast Boomtown, the series is an upstairs/downstairs story of roughnecks and wildcat billionaires fueling a boom so big, it’s reshaping our climate, our economy and our geopolitics."

Landman, Paramount+'Landman' stars Billy Bob Thornton. Photo courtesy of Paramount+

The series stars Billy Bob Thornton as the titular "land man" Tommy Norris, a crisis manager for an oil company.

He leads an all-star cast that includes Demi Moore as Cami Miller and Jon Hamm in a recurring guest role as her husband, Texas oil titan Monty Miller. Ali Larter plays Thornton's wife, Angela Norris; their two kids are portrayed by Michelle Randolph (1923) and Jacob Lofland (Joker 2).

Landman, Jon Hamm, Demi MooreJon Hamm stars as Texas oil titan Monty Miller, and Demi Moore plays his wife, Cami.Photo courtesy of Paramount+

Other stars include James Jordan (Yellowstone), Kayla Wallace (When Calls the Heart), Mark Collie (Nashville), and Paulina Chávez (The Expanding Universe of Ashley Garcia); Andy Garcia (Expendables franchise) and Michael Peña (End of Watch)will make guest appearances.

Sheridan is creator and executive co-producer, and the show is produced by MTV Entertainment Studios, 101 Studios, and Sheridan’s Bosque Ranch Productions. Its release comes sooner than expected; even the show's IMDB page says "2025."

Although it's set in West Texas,Landman has been filming around Dallas-Fort Worth since early 2024, with the show's stars frequenting restaurants and shops around town. Fans have been making a sport of posting local star sightings on social media.

Some lucky residents even got to be extras in sports scenes shot at TCU.

Unlike 1883, which was filmed in and around North Texas in 2021, Landman is not considered a Yellowstone spinoff.

Filming around Dallas-Fort Worth is convenient for Sheridan, who lives on a ranch near Weatherford with his wife, Nicole. He also filmed parts of his series Lawmen: Bass Reeves in North Texas in 2023.

A Texas cowboy through and through, Sheridan is the creator of the award-winning series Yellowstone, its prequels 1883 and 1923, and a forthcoming one reportedly called 1944, starring fellow Texan Matthew McConaughey.

The only question left is: Will Texas get to host the big Landman red-carpet premiere, as Fort Worth did for the Yellowstone Season 5 premiere in November 2022? Stay tuned.

———

This article originally ran on CultureMap.