HEXAspec, founded by Tianshu Zhai and Chen-Yang Lin, has been awarded an NSF Partnership for Innovation grant. Photo courtesy of Rice

HEXAspec, a spinout from Rice University's Liu Idea Lab for Innovation and Entrepreneurship, was recently awarded a $500,000 National Science Foundation Partnership for Innovation grant.

The team says it will use the funding to continue enhancing semiconductor chips’ thermal conductivity to boost computing power. According to a release from Rice, HEXAspec has developed breakthrough inorganic fillers that allow graphic processing units (GPUs) to use less water and electricity and generate less heat.

The technology has major implications for the future of computing with AI sustainably.

“With the huge scale of investment in new computing infrastructure, the problem of managing the heat produced by these GPUs and semiconductors has grown exponentially. We’re excited to use this award to further our material to meet the needs of existing and emerging industry partners and unlock a new era of computing,” HEXAspec co-founder Tianshu Zhai said in the release.

HEXAspec was founded by Zhai and Chen-Yang Lin, who both participated in the Rice Innovation Fellows program. A third co-founder, Jing Zhang, also worked as a postdoctoral researcher and a research scientist at Rice, according to HEXAspec's website.

The HEXASpec team won the Liu Idea Lab for Innovation and Entrepreneurship's H. Albert Napier Rice Launch Challenge in 2024. More recently, it also won this year's Energy Venture Day and Pitch Competition during CERAWeek in the TEX-E student track, taking home $25,000.

"The grant from the NSF is a game-changer, accelerating the path to market for this transformative technology," Kyle Judah, executive director of Lilie, added in the release.

---

This article originally ran on InnovationMap.

A team of Texas researchers has landed a nearly $1 million NSF grant to address rural flood management challenges with community input. Photo via Getty Images.

Houston-led project earns $1 million in federal funding for flood research

team work

A team from Rice University, the University of Texas at Austin and Texas A&M University have been awarded a National Science Foundation grant under the CHIRRP—or Confronting Hazards, Impacts and Risks for a Resilient Planet—program to combat flooding hazards in rural Texas.

The grant totals just under $1 million, according to a CHIRRP abstract.

The team is led by Avantika Gori, assistant professor of civil and environmental engineering at Rice. Other members include Rice’s James Doss-Gollin, Andrew Juan at Texas A&M University and Keri Stephens at UT Austin.

Researchers from Rice’s Severe Storm Prediction, Education and Evacuation from Disasters Center and Ken Kennedy Institute, Texas A&M’s Institute for A Disaster Resilient Texas and the Technology & Information Policy Institute at UT Austin are part of the team as well.

Their proposal includes work that introduces a “stakeholder-centered framework” to help address rural flood management challenges with community input.

“Our goal is to create a flood management approach that truly serves rural communities — one that’s driven by science but centers around the people who are impacted the most,” Gori said in a news release.

The project plans to introduce a performance-based system dynamics framework that integrates hydroclimate variability, hydrology, machine learning, community knowledge, and feedback to give researchers a better understanding of flood risks in rural areas.

The research will be implemented in two rural Texas areas that struggle with constant challenges associated with flooding. The case studies aim to demonstrate how linking global and regional hydroclimate variability with local hazard dynamics can work toward solutions.

“By integrating understanding of the weather dynamics that cause extreme floods, physics-based models of flooding and AI or machine learning tools together with an understanding of each community’s needs and vulnerabilities, we can better predict how different interventions will reduce a community’s risk,” Doss-Gollin said in a news release.

At the same time, the project aims to help communities gain a better understanding of climate science in their terms. The framework will also consider “resilience indicators,” such as business continuity, transportation access and other features that the team says more adequately address the needs of rural communities.

“This work is about more than flood science — it’s also about identifying ways to help communities understand flooding using words that reflect their values and priorities,” said Stephens. “We’re creating tools that empower communities to not only recover from disasters but to thrive long term.”

Research from Rice University of 20 U.S. cities shows that income was linked to who benefits most from public EV infrastructure. Photo by Andrew Roberts/Unsplash

Houston researcher dives into accessibility of public EV charging stations

EV equity

A Rice University professor wants to redraw the map for the placement of electric vehicle charging stations to level the playing field for access to EV power sources.

Xinwu Qian, assistant professor of civil and environmental engineering at Rice, is leading research to rethink where EV charging stations should be installed so that they’re convenient for all motorists going about their day-to-day activities.

“Charging an electric vehicle isn’t just about plugging it in and waiting — it takes 30 minutes to an hour even with the fastest charger — therefore, it’s an activity layered with social, economic, and practical implications,” Qian says on Rice’s website. “While we’ve made great strides in EV adoption, the invisible barriers to public charging access remain a significant challenge.”

According to Qian’s research, public charging stations are more commonly located near low-income households, as these residents are less likely to afford or enjoy access to at-home charging. However, these stations are often far from where they conduct everyday activities.

The Rice report explains that, in contrast, public charging stations are geographically farther from affluent suburban areas. However, they often fit more seamlessly into these residents' daily schedules. As a result, low-income communities face an opportunity gap, where public charging may exist in theory but is less practical in reality.

A 2024 study led by Qian analyzed data from over 28,000 public EV charging stations and 5.5 million points across 20 U.S. cities.

“The findings were stark: Income, rather than proximity, was the dominant factor in determining who benefits most from public EV infrastructure,” Qian says.

“Wealthier individuals were more likely to find a charging station at places they frequent, and they also had the flexibility to spend time at those places while charging their vehicles,” he adds. “Meanwhile, lower-income communities struggled to integrate public charging into their routines due to a compounded issue of shorter dwell times and less alignment with daily activities.”

To make matters worse, businesses often target high-income people when they install charging stations, Qian’s research revealed.

“It’s a sad reality,” Qian said. “If we don’t address these systemic issues now, we risk deepening the divide between those who can afford EVs and those who can’t.”

A grant from the National Science Foundation backs Qian’s further research into this subject. He says the public and private sectors must collaborate to address the inequity in access to public charging stations for EVs.

Decades of research have culminated in the creation of the Water Technologies Entrepreneurship and Research (WaTER) Institute at Rice University. Photo via Pexels

Rice University researchers pioneer climatetech breakthroughs in clean water nanotechnology

tapping in

Researchers at Rice University are making cleaner water through the use of nanotech.

Decades of research have culminated in the creation of the Water Technologies Entrepreneurship and Research (WaTER) Institute launched in January 2024 and its new Rice PFAS Alternatives and Remediation Center (R-PARC).

“Access to safe drinking water is a major limiting factor to human capacity, and providing access to clean water has the potential to save more lives than doctors,” Rice’s George R. Brown Professor of Civil and Environmental Engineering Pedro Alvarez says in a news release.

The WaTER Institute has made advancements in clean water technology research and applications established during a 10-year period of Nanotechnology Enabled Water Treatment (NEWT), which was funded by the National Science Foundation. R-PARC will use the institutional investments, which include an array of PFAS-dedicated advanced analytical equipment.

Alvarez currently serves as director of NEWT and the WaTER Institute. He’s joined by researchers that include Michael Wong, Rice’s Tina and Sunit Patel Professor in Molecular Nanotechnology, chair and professor of chemical and biomolecular engineering and leader of the WaTER Institute’s public health research thrust, and James Tour, Rice’s T.T. and W.F. Chao Professor of Chemistry and professor of materials science and nanoengineering.

“We are the leaders in water technologies using nano,” adds Wong. “Things that we’ve discovered within the NEWT Center, we’ve already started to realize will be great for real-world applications.”

The NEWT center plans to equip over 200 students to address water safety issues, and assist/launch startups.

“Across the world, we’re seeing more serious contamination by emerging chemical and biological pollutants, and climate change is exacerbating freshwater scarcity with more frequent droughts and uncertainty about water resources,” Alvarez said in a news release. “The Rice WaTER Institute is growing research and alliances in the water domain that were built by our NEWT Center.”

———

This article originally ran on InnovationMap.

OpenSafe.AI, a new platform that utilizes AI, data, and hazard and resilience models to support storm response decision makers, has secured an NSF grant. Photo via Getty Images

Houston-area researchers score $1.5M grant to develop storm response tech platform

fresh funding

Researchers from Rice University have secured a $1.5 million grant from the National Science Foundation to continue their work on improving safety and resiliency of coastal communities plagued by flooding and hazardous weather.

The Rice team of engineers and collaborators includes Jamie Padgett, Ben Hu, and Avantika Gori along with David Retchless at Texas A&M University at Galveston. The researchers are working in collaboration with the Severe Storm Prediction, Education and Evacuation from Disasters (SSPEED) Center and the Ken Kennedy Institute at Rice and A&M-Galveston’s Institute for a Disaster Resilient Texas.

Together, the team is developing and hopes to deploy “Open-Source Situational Awareness Framework for Equitable Multi-Hazard Impact Sensing using Responsible AI,” or OpenSafe.AI, a new platform that utilizes AI, data, and hazard and resilience models "to provide timely, reliable and equitable insights to emergency response organizations and communities before, during and after tropical cyclones and coastal storm events," reads a news release from Rice.

“Our goal with this project is to enable communities to better prepare for and navigate severe weather by providing better estimates of what is actually happening or might happen within the next hours or days,” Padgett, Rice’s Stanley C. Moore Professor in Engineering and chair of the Department of Civil and Environmental Engineering, says in the release. “OpenSafe.AI will take into account multiple hazards such as high-speed winds, storm surge and compound flooding and forecast their potential impact on the built environment such as transportation infrastructure performance or hazardous material spills triggered by severe storms.”

OpenSafe.AI platform will be developed to support decision makers before, during, and after a storm.

“By combining cutting-edge AI with a deep understanding of the needs of emergency responders, we aim to provide accurate, real-time information that will enable better decision-making in the face of disasters,” adds Hu, associate professor of computer science at Rice.

In the long term, OpenSafe.AI hopes to explore how the system can be applied to and scaled in other regions in need of equitable resilience to climate-driven hazards.

“Our goal is not only to develop a powerful tool for emergency response agencies along the coast but to ensure that all communities ⎯ especially the ones most vulnerable to storm-induced damage ⎯ can rely on this technology to better respond to and recover from the devastating effects of coastal storms,” adds Gori, assistant professor of civil and environmental engineering at Rice.

University of Houston professor Xiaonan Shan and the rest of his research team are celebrating fresh funding from a federal grant. Photo via UH.edu

Houston scientists land $1M NSF funding for AI-powered clean energy project

A team of scientists from the University of Houston, in collaboration with Howard University in Washington D.C., has received a $1 million award from the National Science Foundation for a project that aims to automate the discovery of new clean-energy catalysts.

The project, dubbed "Multidisciplinary High-Performance Computing and Artificial Intelligence Enabled Catalyst Design for Micro-Plasma Technologies in Clean Energy Transition," aims to use machine learning and AI to improve the efficiency of catalysts in hydrogen generation, carbon capture and energy storage, according to UH.

“This research directly contributes to these global challenges,” Jiefu Chen, the principal investigator of the project and associate professor of electrical and computer engineering, said in a statement. “This interdisciplinary effort ensures comprehensive and innovative solutions to complex problems.”

Chen is joined by Lars Grabow, professor of chemical and biomolecular engineering; Xiaonan Shan, associate professor of electrical and computing engineering; and Xuquing Wu, associate professor of information science technology. Su Yan, an associate professor of electrical engineering and computer science at Howard University, is collaborating on the project.

The University of Houston team: Xiaonan Shan, associate professor electrical and computing engineering, Jiefu Chen, associate professor of electrical and computer engineering, Lars Grabow, professor of chemical and biomolecular engineering, and Xuquing Wu, associate professor of information science technology. Photo via UH.edu

The team will create a robotic synthesis and testing facility that will automate the experimental testing and verification process of the catalyst design process, which traditionally is slow-going. It will implement AI and advanced, unsupervised machine learning techniques, and have a special focus on plasma reactions.

The project has four main focuses, according to UH.

  1. Using machine learning to discover materials for plasma-assisted catalytic reactions
  2. Developing a model to simulate complex interactions to better understand microwave-plasma-assisted heating
  3. Designing catalysts supports for efficient microwave-assisted reactions
  4. Developing a bench scale reactor to demonstrate the efficiency of the catalysts support system

Additionally, the team will put the funding toward the development of a multidisciplinary research and education program that will train students on using machine learning for topics like computational catalysis, applied electromagnetics and material synthesis. The team is also looking to partner with industry on related projects.

“This project will help create a knowledgeable and skilled workforce capable of addressing critical challenges in the clean energy transition,” Grabow added in a statement. “Moreover, this interdisciplinary project is going to be transformative in that it advances insights and knowledge that will lead to tangible economic impact in the not-too-far future.”

This spring, UH launched a new micro-credential course focused on other applications for AI and robotics in the energy industry.

Around the same time, Microsoft's famous renowned co-founder Bill Gates spoke at CERAWeek to a standing-room-only crowd on the future of the industry. Also founder of Breakthrough Energy, Gates addressed the topic of AI.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Energy sector AI spending is set to soar to $13B, report says

eyes on ai

Get ready for a massive increase in the amount of AI spending by oil and gas companies in the Houston area and around the country.

A new report from professional services firm Deloitte predicts AI will represent 57 percent of IT spending by U.S. oil and gas companies in 2029. That’s up from the estimated share of 23 percent in 2025.

According to the analysis, the amount of AI spending in the oil and gas industry will jump from an estimated $4 billion in 2025 to an estimated $13.4 billion in 2029—an increase of 235 percent.

Almost half of AI spending by U.S. oil and gas companies targets process optimization, according to Deloitte’s analysis of data from market research companies IDC and Gartner. “AI-driven analytics adjust drilling parameters and production rates in real time, improving yield and decision-making,” says the Deloitte report.

Other uses for AI in the oil and gas industry cited by Deloitte include:

  • Integrating infrastructure used by shale producers
  • Monitoring pipelines, drilling platforms, refineries, and other assets
  • Upskilling workers through AI-powered platforms
  • Connecting workers on offshore rigs via high-speed, real-time internet access supplied by satellites
  • Detecting and reporting leaks

The report says a new generation of technology, including AI and real-time analytics, is transforming office and on-site operations at oil and gas companies. The Trump administration’s “focus on AI innovation through supportive policies and investments could further accelerate large-scale adoption and digital transformation,” the report adds.

Chevron and ExxonMobil, the two biggest oil and gas companies based in the Houston area, continue to dive deeper into AI.

Chevron is taking advantage of AI to squeeze more insights from enormous datasets, VentureBeat reported.

“AI is a perfect match for the established, large-scale enterprise with huge datasets—that is exactly the tool we need,” Bill Braun, the company’s now-retired chief information officer, said at a VentureBeat event in May.

Meanwhile, AI enables ExxonMobil to conduct autonomous drilling in the waters off the coast of Guyana. ExxonMobil says its proprietary system improves drilling safety, boosts efficiency, and eliminates repetitive tasks performed by rig workers.

ExxonMobil is also relying on AI to help cut $15 billion in operating costs by 2027.

“There is a concerted effort to make sure that we’re really working hard to apply that new technology … to drive effectiveness and efficiency,” Darren Woods, executive chairman and CEO of ExxonMobil, said during a 2024 earnings call.

Houston Innovation Awards winners include Fervo, Eclipse Energy & more

Top Innovators

After weeks of anticipation, the 2025 Houston Innovation Awards winners have been revealed. Finalists, judges, and VIPs from Houston's vibrant innovation community gathered on Nov. 13 at Greentown Labs for the fifth annual event, which is presented by InnovationMap.com.

This year, the Houston Innovation Awards recognized more than 40 finalists, with winners unveiled in 10 categories, including multiple winners from the local energy transition space.

Finalists and winners were determined by our esteemed panel of judges, comprised of 2024 winners who represent various Houston industries, as well as InnovationMap editorial leadership. One winner was determined by the public via an online competition: Startup of the Year.

The program was emceed by Lawson Gow, Head of Houston for Greentown Labs. Sponsors included Houston City College Northwest, Houston Powder Coaters, FLIGHT by Yuengling, and more.

Without further adieu, meet the 2025 Houston Innovation Awards winners:

Minority-founded Business: Mars Materials

Clean chemical manufacturing business Mars Materials is working to convert captured carbon into resources, such as carbon fiber and wastewater treatment chemicals. The company develops and produces its drop-in chemical products in Houston and uses an in-licensed process for the National Renewable Energy Lab to produce acrylonitrile, which is used to produce plastics, synthetic fibers and rubbers. The company reports that it plans to open its first commercial plant in the next 18 months.

Female-founded Business, presented by Houston Powder Coaters: March Biosciences

Houston cell therapy company March Biosciences aims to treat unaddressed challenging cancers, with its MB-105, a CD5-targeted CAR-T cell therapy for patients with relapsed or refractory CD5-positive T-cell lymphoma, currently in Phase 2 clinical trials. The company was founded in 2021 by CEO Sarah Hein, Max Mamonkin and Malcolm Brenner and was born out of the TMC Accelerator for Cancer Therapeutics.

Energy Transition Business: Eclipse Energy

Previously known as Gold H2, Eclipse Energy converts end-of-life oil fields into low-cost, sustainable hydrogen sources. It completed its first field trial this summer, which demonstrated subsurface bio-stimulated hydrogen production. According to the company, its technology could yield up to 250 billion kilograms of low-carbon hydrogen.

Health Tech Business: Koda Health

Koda Health has developed an advance care planning platform (ACP) that allows users to document and share their care preferences, goals and advance directives for health systems. The web-based platform guides patients through values-based decisions with interactive tools and generates state-specific, legally compliant documents that integrate seamlessly with electronic health record systems. Last year, the company also added kidney action planning to its suite of services for patients with serious illnesses. In 2025, it announced major partnerships and integrations with Epic, Guidehealth, and others, and raised a $7 million series A.

Deep Tech Business: Persona AI

Persona AI is building modularized humanoid robots that aim to deliver continuous, round-the-clock productivity and skilled labor for "dull, dirty, dangerous, and declining" jobs. The company was founded by Houston entrepreneur Nicolaus Radford, who serves as CEO, along with CTO Jerry Pratt and COO Jide Akinyode. It raised eight figures in pre-seed funding this year and is developing its prototype of a robot-welder for Hyundai's shipbuilding division, which it plans to unveil in 2026.

Scaleup of the Year: Fervo Energy

Houston-based Fervo Energy is working to provide 24/7 carbon-free energy through the development of cost-competitive geothermal power. The company is developing its flagship Cape Station geothermal power project in Utah, which is expected to generate 400 megawatts of clean energy for the grid. The company raised $205.6 million in capital to help finance the project earlier this year and fully contracted the project's capacity with the addition of a major power purchase agreement from Shell.

Incubator/Accelerator of the Year: Greentown Labs

Climatetech incubator Greentown Labs offers its community resources and a network to climate and energy innovation startups looking to grow. The collaborative community offers members state-of-the-art prototyping labs, business resources and access to investors and corporate partners. The co-located incubator was first launched in Boston in 2011 before opening in Houston in 2021.

Startup of the Year (People's Choice): FlowCare

FlowCare is developing a period health platform that integrates smart dispensers, education, and healthcare into one system to make free, high-quality, organic period products more accessible. FlowCare is live at prominent Houston venues, including Discovery Green, Texas Medical Center, The Ion, and, most recently, Space Center Houston, helping make Houston a “period positivity” city.

Mentor of the Year, presented by Houston City College Northwest: Jason Ethier, EnergyTech Nexus

Jason Ethier is the founding partner of EnergyTech Nexus, through which he has mentored numerous startups and Innovation Awards finalists, including Geokiln, Energy AI Solutions, Capwell Services and Corrolytics. He founded Dynamo Micropower in 2011 and served as its president and CEO. He later co-founded Greentown Labs in Massachusetts and helped bring the accelerator to Houston.

2025 Trailblazer Award: Wade Pinder

Wade Pinder, founder of Product Houston, identifies as an "Ecosystem Wayseeker" and is the founder of Product Houston. A former product manager at Blinds.com, he has been deeply engaged in Houston’s startup and innovation scene since 2012. Over the years, he has supported hundreds of founders, product leaders, and community builders across the Houston area. In 2023, he was honored as Mentor of the Year in the Houston Innovation Awards.

SLB partners with renewables company to develop next-gen geothermal systems

geothermal partnership

Houston-based energy technology company SLB and renewable energy company Ormat Technologies have teamed up to fast-track the development and commercialization of advanced geothermal technology.

Their initiative focuses on enhanced geothermal systems (EGS). These systems represent “the next generation of geothermal technology, meant to unlock geothermal energy in regions beyond where conventional geothermal resources exist,” the companies said in a news release.

After co-developing EGS technology, the companies will test it at an existing Ormat facility. Following the pilot project, SLB and Nevada-based Ormat will pursue large-scale EGS commercialization for utilities, data center operators and other customers. Ormat owns, operates, designs, makes and sells geothermal and recovered energy generation (REG) power plants.

“There is an urgent need to meet the growing demand for energy driven by AI and other factors. This requires accelerating the path to clean and reliable energy,” Gavin Rennick, president of new energy at SLB, said in a news release.

Traditional geothermal systems rely on natural hot water or steam reservoirs underground, limiting the use of geothermal technology. EGS projects are designed to create thermal reservoirs in naturally hot rock through which water can circulate, transferring the energy back to the surface for power generation and enabling broader availability of geothermal energy.

The U.S. Department of Energy estimates next-generation geothermal, such as EGS, could provide 90 gigawatts of electricity by 2050.