Helix Earth's technology has the potential to cut AC energy use by up to 50 percent. Photo by Sergei A/Pexels

Renewable equipment manufacturer Helix Earth Technologies is one of three Houston-based companies to secure federal funding through the Small Business Innovation Research (SBIR) Phase II grant program in recent months.

The company—which was founded based on NASA technology, spun out of Rice University and has been incubated at Greentown Labs—has received approximately $1.2 million from the National Science Foundation to develop its high-efficiency retrofit dehumidification systems that aim to reduce the energy consumption of commercial AC units. The company reports that its technology has the potential to cut AC energy use by up to 50 percent.

"This award validates our vision and propels our impact forward with valuable research funding and the prestige of the NSF stamp of approval," Rawand Rasheed, Helix CEO and founder, shared in a LinkedIn post. "This award is a reflection our exceptional team's grit, expertise, and collaborative spirit ... This is just the beginning as we continue pushing for a sustainable future."

Two other Houston-area companies also landed $1.2 million in NSF SBIR Phase II funding during the same period:

  • Resilitix Intelligence, a disaster AI startup that was founded shortly after Hurricane Harvey, that works to "reduce the human and economic toll of disasters" by providing local and state organizations and emergency response teams with near-real-time, AI-driven insights to improve response speed, save lives and accelerate recovery
  • Conroe-based Fluxworks Inc., founded in 2021 at Texas A&M, which provides magnetic gear technology for the space industry that has the potential to significantly enhance in-space manufacturing and unlock new capabilities for industries by allowing advanced research and manufacturing in microgravity

The three grants officially rolled out in early September 2025 and are expected to run through August 2027, according to the NSF. The SBIR Phase II grants support in-depth research and development of ideas that showed potential for commercialization after receiving Phase I grants from government agencies.

However, congressional authority for the program, often called "America's seed fund," expired on September 30, 2025, and has stalled since the recent government shutdown. Government agencies cannot issue new grants until Congress agrees on a path forward. According to SBIR.gov, "if no further action is taken by Congress, federal agencies may not be able to award funding under SBIR/STTR programs and SBIR/STTR solicitations may be delayed, cancelled, or rescinded."

A team led by UH professor Xuqing "Jason" Wu (center) is working to introduce high school and community college students to the U.S. mineral industry. Photo courtesy UH.

UH lands $1M NSF grant to train future critical minerals workforce

workforce pipeline

The University of Houston has launched a $1 million initiative funded by the National Science Foundation to address the gap in the U.S. mineral industry and bring young experts to the field.

The program will bring UH and key industry partners together to expand workforce development and drive research that fuels innovation. It will be led by Xuqing "Jason" Wu, an associate professor of information science technology.

“The program aims to reshape public perception of the critical minerals industry, highlighting its role in energy, defense and advanced manufacturing,” Wu said in a news release. “Our program aims to showcase the industry’s true, high-tech nature.”

The project will sponsor 10 high school students and 10 community college students in Houston each year. It will include industry mentors and participation in a four-week training camp that features “immersive field-based learning experiences.”

“High school and community college students often lack exposure to career pathways in mining, geoscience, materials science and data science,” Wu added in the release. “This project is meant to ignite student interest and strengthen the U.S. workforce pipeline in the minerals industry by equipping students with technical skills, industry knowledge and career readiness.”

This interdisciplinary initiative will also work with co-principal investigators across fields at UH:

  • Jiajia Sun, Earth & Atmospheric Sciences
  • Yan Yao and Jiefu Chen, Electrical and Computer Engineering
  • Yueqin Huang, Information Science Technology

According to UH, minerals and rare earth elements have become “essential building blocks of modern life” and are integral components in technology and devices, roads, the energy industry and more.

HEXAspec, founded by Tianshu Zhai and Chen-Yang Lin, has been awarded an NSF Partnership for Innovation grant. Photo courtesy of Rice

Rice University spinout lands $500K NSF grant to boost chip sustainability

cooler computing

HEXAspec, a spinout from Rice University's Liu Idea Lab for Innovation and Entrepreneurship, was recently awarded a $500,000 National Science Foundation Partnership for Innovation grant.

The team says it will use the funding to continue enhancing semiconductor chips’ thermal conductivity to boost computing power. According to a release from Rice, HEXAspec has developed breakthrough inorganic fillers that allow graphic processing units (GPUs) to use less water and electricity and generate less heat.

The technology has major implications for the future of computing with AI sustainably.

“With the huge scale of investment in new computing infrastructure, the problem of managing the heat produced by these GPUs and semiconductors has grown exponentially. We’re excited to use this award to further our material to meet the needs of existing and emerging industry partners and unlock a new era of computing,” HEXAspec co-founder Tianshu Zhai said in the release.

HEXAspec was founded by Zhai and Chen-Yang Lin, who both participated in the Rice Innovation Fellows program. A third co-founder, Jing Zhang, also worked as a postdoctoral researcher and a research scientist at Rice, according to HEXAspec's website.

The HEXASpec team won the Liu Idea Lab for Innovation and Entrepreneurship's H. Albert Napier Rice Launch Challenge in 2024. More recently, it also won this year's Energy Venture Day and Pitch Competition during CERAWeek in the TEX-E student track, taking home $25,000.

"The grant from the NSF is a game-changer, accelerating the path to market for this transformative technology," Kyle Judah, executive director of Lilie, added in the release.

---

This article originally ran on InnovationMap.

A team of Texas researchers has landed a nearly $1 million NSF grant to address rural flood management challenges with community input. Photo via Getty Images.

Houston-led project earns $1 million in federal funding for flood research

team work

A team from Rice University, the University of Texas at Austin and Texas A&M University have been awarded a National Science Foundation grant under the CHIRRP—or Confronting Hazards, Impacts and Risks for a Resilient Planet—program to combat flooding hazards in rural Texas.

The grant totals just under $1 million, according to a CHIRRP abstract.

The team is led by Avantika Gori, assistant professor of civil and environmental engineering at Rice. Other members include Rice’s James Doss-Gollin, Andrew Juan at Texas A&M University and Keri Stephens at UT Austin.

Researchers from Rice’s Severe Storm Prediction, Education and Evacuation from Disasters Center and Ken Kennedy Institute, Texas A&M’s Institute for A Disaster Resilient Texas and the Technology & Information Policy Institute at UT Austin are part of the team as well.

Their proposal includes work that introduces a “stakeholder-centered framework” to help address rural flood management challenges with community input.

“Our goal is to create a flood management approach that truly serves rural communities — one that’s driven by science but centers around the people who are impacted the most,” Gori said in a news release.

The project plans to introduce a performance-based system dynamics framework that integrates hydroclimate variability, hydrology, machine learning, community knowledge, and feedback to give researchers a better understanding of flood risks in rural areas.

The research will be implemented in two rural Texas areas that struggle with constant challenges associated with flooding. The case studies aim to demonstrate how linking global and regional hydroclimate variability with local hazard dynamics can work toward solutions.

“By integrating understanding of the weather dynamics that cause extreme floods, physics-based models of flooding and AI or machine learning tools together with an understanding of each community’s needs and vulnerabilities, we can better predict how different interventions will reduce a community’s risk,” Doss-Gollin said in a news release.

At the same time, the project aims to help communities gain a better understanding of climate science in their terms. The framework will also consider “resilience indicators,” such as business continuity, transportation access and other features that the team says more adequately address the needs of rural communities.

“This work is about more than flood science — it’s also about identifying ways to help communities understand flooding using words that reflect their values and priorities,” said Stephens. “We’re creating tools that empower communities to not only recover from disasters but to thrive long term.”

Research from Rice University of 20 U.S. cities shows that income was linked to who benefits most from public EV infrastructure. Photo by Andrew Roberts/Unsplash

Houston researcher dives into accessibility of public EV charging stations

EV equity

A Rice University professor wants to redraw the map for the placement of electric vehicle charging stations to level the playing field for access to EV power sources.

Xinwu Qian, assistant professor of civil and environmental engineering at Rice, is leading research to rethink where EV charging stations should be installed so that they’re convenient for all motorists going about their day-to-day activities.

“Charging an electric vehicle isn’t just about plugging it in and waiting — it takes 30 minutes to an hour even with the fastest charger — therefore, it’s an activity layered with social, economic, and practical implications,” Qian says on Rice’s website. “While we’ve made great strides in EV adoption, the invisible barriers to public charging access remain a significant challenge.”

According to Qian’s research, public charging stations are more commonly located near low-income households, as these residents are less likely to afford or enjoy access to at-home charging. However, these stations are often far from where they conduct everyday activities.

The Rice report explains that, in contrast, public charging stations are geographically farther from affluent suburban areas. However, they often fit more seamlessly into these residents' daily schedules. As a result, low-income communities face an opportunity gap, where public charging may exist in theory but is less practical in reality.

A 2024 study led by Qian analyzed data from over 28,000 public EV charging stations and 5.5 million points across 20 U.S. cities.

“The findings were stark: Income, rather than proximity, was the dominant factor in determining who benefits most from public EV infrastructure,” Qian says.

“Wealthier individuals were more likely to find a charging station at places they frequent, and they also had the flexibility to spend time at those places while charging their vehicles,” he adds. “Meanwhile, lower-income communities struggled to integrate public charging into their routines due to a compounded issue of shorter dwell times and less alignment with daily activities.”

To make matters worse, businesses often target high-income people when they install charging stations, Qian’s research revealed.

“It’s a sad reality,” Qian said. “If we don’t address these systemic issues now, we risk deepening the divide between those who can afford EVs and those who can’t.”

A grant from the National Science Foundation backs Qian’s further research into this subject. He says the public and private sectors must collaborate to address the inequity in access to public charging stations for EVs.

Decades of research have culminated in the creation of the Water Technologies Entrepreneurship and Research (WaTER) Institute at Rice University. Photo via Pexels

Rice University researchers pioneer climatetech breakthroughs in clean water nanotechnology

tapping in

Researchers at Rice University are making cleaner water through the use of nanotech.

Decades of research have culminated in the creation of the Water Technologies Entrepreneurship and Research (WaTER) Institute launched in January 2024 and its new Rice PFAS Alternatives and Remediation Center (R-PARC).

“Access to safe drinking water is a major limiting factor to human capacity, and providing access to clean water has the potential to save more lives than doctors,” Rice’s George R. Brown Professor of Civil and Environmental Engineering Pedro Alvarez says in a news release.

The WaTER Institute has made advancements in clean water technology research and applications established during a 10-year period of Nanotechnology Enabled Water Treatment (NEWT), which was funded by the National Science Foundation. R-PARC will use the institutional investments, which include an array of PFAS-dedicated advanced analytical equipment.

Alvarez currently serves as director of NEWT and the WaTER Institute. He’s joined by researchers that include Michael Wong, Rice’s Tina and Sunit Patel Professor in Molecular Nanotechnology, chair and professor of chemical and biomolecular engineering and leader of the WaTER Institute’s public health research thrust, and James Tour, Rice’s T.T. and W.F. Chao Professor of Chemistry and professor of materials science and nanoengineering.

“We are the leaders in water technologies using nano,” adds Wong. “Things that we’ve discovered within the NEWT Center, we’ve already started to realize will be great for real-world applications.”

The NEWT center plans to equip over 200 students to address water safety issues, and assist/launch startups.

“Across the world, we’re seeing more serious contamination by emerging chemical and biological pollutants, and climate change is exacerbating freshwater scarcity with more frequent droughts and uncertainty about water resources,” Alvarez said in a news release. “The Rice WaTER Institute is growing research and alliances in the water domain that were built by our NEWT Center.”

———

This article originally ran on InnovationMap.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston startup launches groundbreaking mineral hydrogen pilot

pilot project

Houston climatech company Vema Hydrogen recently completed drilling its first two pilot wells in Quebec for its Engineered Mineral Hydrogen (EMH) pilot. The company says the project is the first EMH pilot of its kind.

Vema’s EMH technology produces low-cost, high-purity hydrogen from subsurface rock formations. It has the capacity to support e-fuel and clean mobility industries and the shipping and air transport markets. The pilot project is the first field deployment of the company’s technology.

“This pilot will provide the critical data needed to validate Engineered Mineral Hydrogen at commercial scale and demonstrate that Quebec can lead the world in this emerging clean energy category,” Pierre Levin, CEO of Vema Hydrogen, said in a news release.

Levin added that the sample collected thus far in the pilot is “exactly what we expected, and is very promising for hydrogen yields.”

Through the pilot, Vema will collect core samples and begin subsurface analysis to evaluate fluid movement and monitor hydrogen production from the wells. The data collected from the pilot will shape Vema's plans for commercialization and provide documentation for proof of concept in the field, according to the news release.

“Vema Hydrogen perfectly embodies the spirit of the grey to green movement: transforming mining liabilities into drivers of innovation and ecological transition,” Ludovic Beauregard, circular economy commissioner at the Thetford Region Economic Development Corporation, added in the release.

“This project demonstrates that it is possible to reconcile the revitalization of mining regions, clean energy and sustainable economic development for these areas.”

In addition to its pilot in Canada, Vema also recently signed a 10-year hydrogen purchase and sale agreement with San Francisco-based Verne Power to supply clean hydrogen for data centers across California. The company was selected as a Qualified Supplier by The First Public Hydrogen Authority, which will allow it to supply clean hydrogen at scale to California’s municipalities, transit agencies and businesses through the FPH2 network.

Vema aims to produce Engineered Mineral Hydrogen for less than $1 per kilogram. The company, founded in 2024, is working toward a gigawatt-scale hydrogen supply in North America.

Houston startup wins funding through new Bezos Earth Fund initiative

global winner

A Houston-based climatech startup is one of the first 16 companies in the world to receive funding through a new partnership between The Bezos Earth Fund and The Earthshot Prize.

Mati Carbon will receive $100,000 through the Bezos Earth Fund’s Acceleration Initiative. The initiative will provide $4.8 million over three years to support climate and nature solutions startups. It's backed by The Bezos Earth Fund, which was founded through a $10 billion gift from Amazon founder Jeff Bezos and aims to "transform the fight against climate change."

The Acceleration Initiative will choose 16 startups each year from The Earthshot Prize’s global pool of nominations that were not selected as finalists. The Earthshot Prize, founded by Prince William, awards £1 million to five energy startups each year over a decade.

"The Earthshot Prize selects 15 finalists each year, but our wider pool of nominations represents a global pipeline of innovators and investable solutions that benefit both people and planet. Collaborating with the Bezos Earth Fund to support additional high-potential solutions is at the heart of commitment to working with partners who share our vision," Jason Knauf, CEO of The Earthshot Prize, said in a news release. "By combining our strengths to support 48 carefully selected grantees from The Earthshot Prize’s pool of nominations, our partnership with the Bezos Earth Fund means we will continue to drive systemic change beyond our annual Prize cycle, delivering real-world impact at scale and speed.”

Mati Carbon was founded in 2022 by co-directors Shantanu Agarwal and Rwitwika Bhattacharya. It removes carbon through its Enhanced Rock Weathering (ERW) program and works with agricultural farms in Africa and India. Mati Carbon says the farmers it partners with are some of the most vulnerable to the impacts of climate change.

"As one of the first 16 organizations selected, this support enables us to expand our operations, move faster and think bigger about the impact we can create," the company shared in a LinkedIn post.

The other grantees from around the world include:

  • Air Protein Inc.
  • Climatenza Solar
  • Instituto Floresta Viva
  • Forum Konservasi Leuser
  • Fundación Rewilding Argentina
  • Hyperion Robotics
  • InPlanet
  • Lasso
  • Mandai Nature
  • MERMAID
  • Asociación Conservacionista Misión Tiburón
  • Simple Planet
  • Snowchange Cooperative
  • tHEMEat Company
  • UP Catalyst

Mati Carbon also won the $50 million grand prize in the XPRIZE Carbon Removal competition, backed by Elon Musk’s charitable organization, The Musk Foundation, last year.

Texas' oil and gas foundation could boost its geothermal future, UH says

future of geothermal

Equipped with the proper policies and investments, Texas could capitalize on its oil and gas infrastructure and expertise to lead the U.S. in development of advanced geothermal power, a new University of Houston white paper says.

Drilling, reservoir development and subsurface engineering are among the Texas oil and gas industry’s capabilities that could translate to geothermal energy, according to a news release. Furthermore, oil and gas skills, data, technology and supply chains could help make geothermal power more cost-effective.

Up to 80 percent of the investment required for a geothermal project involves capacity and skills that are common in the oil and gas industry, the white paper points out.

Building on its existing oil-and-gas foundation, Texas could help accelerate production of geothermal energy, lower geothermal energy costs and create more jobs in the energy workforce, according to the news release.

The paper also highlights geothermal progress made by Houston-based companies Fervo Energy, Quaise Energy and Sage Geosystems, as well as Canada-based Eavor Technologies Inc.

UH’s Division of Energy published the white paper, Advanced Geothermal: Opportunities and Challenges, in partnership with the C.T. Bauer College of Business’ Gutierrez Energy Management Institute.

“Energy demand, especially electricity demand, is continuing to grow, and we need to develop new low-carbon energy sources to meet those needs,” Greg Bean, executive director of the institute and author of the white paper, said of geothermal’s potential.