Bruce Weisman's career has come full circle with a recent award. Photo via rice.edu

Rice University chemist Bruce Weisman has been awarded the Richard E. Smalley Research Award for his decades of nanocarbon research, according to a statement from the university.

The honor is a full circle moment for Wiseman, as the award is named after Weisman's long-time Rice colleague and friend, Rick Smalley, who Wiseman said helped shape his career.

“It changed my career,” Weisman said in a statement from Rice about his work with Smalley. “Everything I’ve done in the last 20 years has been an outgrowth, a consequence of that.”

Still, Weisman has earned many achievements of his own. He joined Rice's faculty in 1979 as a spectroscopist and first began working with Smalley in 1985 after Smalley's groundbreaking discovery of carbon 60, or buckyballs. The discovery proved that carbon could take on other forms and it won Smalley and his teammates the 1996 Nobel Prize in Chemistry.

Weisman and Smalley then collaborated on experiments to measure the electronic spectra of carbon 60 and carbon 70. In the early 2000s, they published two seminal nanotube studies in Science in which Weisman shared his new faster, simpler and cheaper spectrometric method of assaying nanotubes, according to Rice.

In 2004 Weisman founded a company, Applied NanoFluorescence, to commercialize the technology. The company still exists and continues to research the optical properties of carbon nanotubes.

He is also an elected fellow of the American Physical Society, the American Association for the Advancement of Science and the the Electrochemical Society (ECS) and former chair of the ECS Nanocarbons Division. The ECS will present Weisman with the 2024 Smalley Research Award in May. The award is given every two years to recognize “outstanding achievements in, or scientific contributions to, the science of fullerenes, nanotubes and carbon nanostructures.”

Earlier this month, another Rice professor won a highly competitive award. Assistant professor Amanda Marciel, the William Marsh Rice Trustee Chair of chemical and biomolecular engineering, was granted a National Science Foundation's CAREER Award that comes with $670,406 over five years to continue her research in designing branch elastomers.

The grant will also create opportunities in soft matter research for undergraduates and underrepresented scientists. Click here to learn more.

Meanwhile, another Houston-based chemist was also recently recognized for their work. Baylor College of Medicine's Livia Schiavinato Eberlin was named the 2024 recipient of the Norman Hackerman Award in Chemical Research in December.

The award from the Houston-based Welch Foundation recognizes the accomplishments of chemical scientists in Texas who are early in their careers. Eberlin will be granted $100,000 for this honor.

UH's Jian Shi recently received the NSF's CAREER award, which will dole out $500,861 in funding through February 2029. Photo via UH.edu

Houston researcher scores $500,000 award to continue on work on energy transition

zeroing in on zero emissions

A University of Houston professor and researcher is laser focused on his work within the energy transition, and National Science Foundation has taken note, awarding him over half a million dollars in funding.

Jian Shi, an assistant professor within the Cullen College of Engineering, recently received the NSF's CAREER award, which will dole out $500,861 in funding through February 2029.

The award was granted for his research, entitled “A Unified Zero-Carbon-Driven Design Framework for Accelerating Power Grid Deep Decarbonization.”

“One of the most major challenges inherent in energy transition is the cost. While reducing carbon emissions serves the best interest of society in the long run, the short-term financial burdens also need to be carefully evaluated to ensure that we have a safe, affordable, reliable and just transition for all,” Shi says in a UH news release. “This challenge has inspired me to work on the innovative framework of “ZERO-Accelerator.”

Shi's ZERO-Accelerator is focused on taking standard carbon-driven tools and integrating them into current power grid operational practices. Shi is the director and founder of SOAR, or the Smart and ZerO-Carbon Energy Analytics and Research Lab.

“It synthesizes interactions from multiple key stakeholders involved in the electricity ecosystem,” says Shi. “The framework considers how to manage carbon allowance allocation and trading for electricity producers, how to maintain a 24/7 zero-carbon power grid for power grid operators and how to enable consumers to understand their carbon footprint and participate in the zero-carbon grid operation.”

In his CAREER proposal, Shi explains that he is also contributing to training the future energy workforce. He adds that he shares this award with his colleagues.

“I believe no accomplishment is truly individual,” he says. “Rather, it is a collective triumph achieved through collaboration, support and shared dedication. As I reflect on the milestones I've reached, I am compelled to express my deepest gratitude to my esteemed colleagues whose unwavering commitment has been instrumental in not just my collective success, but our collective success as well."

Last summer, Shi mentored a UH team in the inaugural American-Made Carbon Management Collegiate Competition, hosted by the U.S. Department of Energy's Office of Fossil Energy and Carbon Management. The team, GreenHouston, took third place in the competition, securing a $5,000 cash prize.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

New report maps Houston workforce development strategies as companies transition to cleaner energy

to-do list

The University of Houston’s Energy University latest study with UH’s Division of Energy and Innovation with stakeholders from the energy industry, academia have released findings from a collaborative white paper, titled "Workforce Development for the Future of Energy.”

UH Energy’s workforce analysis found that the greatest workforce gains occur with an “all-of-the-above” strategy to address the global shift towards low-carbon energy solutions. This would balance electrification and increased attention to renewables with liquid fuels, biomass, hydrogen, carbon capture, utilization and storage commonly known as CCUS, and carbon dioxide removal, according to a news release.

The authors of the paper believe this would support economic and employment growth, which would leverage workers from traditional energy sectors that may lose jobs during the transition.

The emerging hydrogen ecosystem is expected to create about 180,000 new jobs in the greater Houston area, which will offer an average annual income of approximately $75,000. Currently, 40 percent of Houston’s employment is tied to the energy sector.

“To sustain the Houston region’s growth, it’s important that we broaden workforce participation and opportunities,” Ramanan Krishnamoorti, vice president of energy and innovation at UH, says in a news release. “Ensuring workforce readiness for new energy jobs and making sure we include disadvantaged communities is crucial.”

Some of the key takeaways include strategies that include partnering for success, hands-on training programs, flexible education pathways, comprehensive support services, and early and ongoing outreach initiatives.

“The greater Houston area’s journey towards a low-carbon future is both a challenge and an opportunity,” Krishnamoorti continues. “The region’s ability to adapt and lead in this new era will depend on its commitment to collaboration, innovation, and inclusivity. By preparing its workforce, engaging its communities, and leveraging its industrial heritage, we can redefine our region and continue to thrive as a global energy leader.”

The study was backed by federal funding from the Department of the Treasury through the State of Texas under the Resources and Ecosystems Sustainability, Tourist Opportunities, and Revived Economies of the Gulf Coast States Act of 2012.

Houston geothermal startup selects Texas location for first energy storage facility

major milestone

Houston-based geothermal energy startup Sage Geosystems has teamed up with a utility provider for an energy storage facility in the San Antonio metro area.

The three-megawatt EarthStore facility will be on land controlled by the San Miguel Electric Cooperative, which produces electricity for customers in 47 South Texas counties. The facility will be located in the town of Christine, near the cooperative’s coal-fired power plant.

Sage says its energy storage system will be paired with solar energy to supply power for the grid operated by the Electric Reliability Council of Texas (ERCOT). The facility is set to open later this year.

“Once operational, our EarthStore facility in Christine will be the first geothermal energy storage system to store potential energy deep in the earth and supply electrons to a power grid,” Cindy Taff, CEO of Sage Geosystems, says in a news release.

The facility is being designed to store geothermal energy during six- to 10-hour periods.

“Long-duration energy storage is crucial for the ERCOT utility grid, especially with the increasing integration of intermittent wind and solar power generation,” says Craig Courter, CEO of the San Miguel Electric Cooperative.