zeroing in on zero emissions

Houston researcher scores $500,000 award to continue on work on energy transition

UH's Jian Shi recently received the NSF's CAREER award, which will dole out $500,861 in funding through February 2029. Photo via UH.edu

A University of Houston professor and researcher is laser focused on his work within the energy transition, and National Science Foundation has taken note, awarding him over half a million dollars in funding.

Jian Shi, an assistant professor within the Cullen College of Engineering, recently received the NSF's CAREER award, which will dole out $500,861 in funding through February 2029.

The award was granted for his research, entitled “A Unified Zero-Carbon-Driven Design Framework for Accelerating Power Grid Deep Decarbonization.”

“One of the most major challenges inherent in energy transition is the cost. While reducing carbon emissions serves the best interest of society in the long run, the short-term financial burdens also need to be carefully evaluated to ensure that we have a safe, affordable, reliable and just transition for all,” Shi says in a UH news release. “This challenge has inspired me to work on the innovative framework of “ZERO-Accelerator.”

Shi's ZERO-Accelerator is focused on taking standard carbon-driven tools and integrating them into current power grid operational practices. Shi is the director and founder of SOAR, or the Smart and ZerO-Carbon Energy Analytics and Research Lab.

“It synthesizes interactions from multiple key stakeholders involved in the electricity ecosystem,” says Shi. “The framework considers how to manage carbon allowance allocation and trading for electricity producers, how to maintain a 24/7 zero-carbon power grid for power grid operators and how to enable consumers to understand their carbon footprint and participate in the zero-carbon grid operation.”

In his CAREER proposal, Shi explains that he is also contributing to training the future energy workforce. He adds that he shares this award with his colleagues.

“I believe no accomplishment is truly individual,” he says. “Rather, it is a collective triumph achieved through collaboration, support and shared dedication. As I reflect on the milestones I've reached, I am compelled to express my deepest gratitude to my esteemed colleagues whose unwavering commitment has been instrumental in not just my collective success, but our collective success as well."

Last summer, Shi mentored a UH team in the inaugural American-Made Carbon Management Collegiate Competition, hosted by the U.S. Department of Energy's Office of Fossil Energy and Carbon Management. The team, GreenHouston, took third place in the competition, securing a $5,000 cash prize.

Trending News

A View From HETI

Researchers have secured $3.3 million in funding to develop an AI-powered subsurface sensing system aimed at improving the safety and efficiency of underground power line installation. Photo via Getty Images

Researchers from the University of Houston — along with a Hawaiian company — have received $3.3 million in funding to explore artificial intelligence-backed subsurface sensing system for safe and efficient underground power line installation.

Houston's power lines are above ground, but studies show underground power is more reliable. Installing underground power lines is costly and disruptive, but the U.S. Department of Energy, in an effort to find a solution, has put $34 million into its new GOPHURRS program, which stands for Grid Overhaul with Proactive, High-speed Undergrounding for Reliability, Resilience, and Security. The funding has been distributed across 12 projects in 11 states.

“Modernizing our nation’s power grid is essential to building a clean energy future that lowers energy costs for working Americans and strengthens our national security,” U.S. Secretary of Energy Jennifer M. Granholm says in a DOE press release.

UH and Hawaii-based Oceanit are behind one of the funded projects, entitled “Artificial Intelligence and Unmanned Aerial Vehicle Real-Time Advanced Look-Ahead Subsurface Sensor.”

The researchers are looking a developing a subsurface sensing system for underground power line installation, potentially using machine learning, electromagnetic resistivity well logging, and drone technology to predict and sense obstacles to installation.

Jiefu Chen, associate professor of electrical and computer engineering at UH, is a key collaborator on the project, focused on electromagnetic antennas installed on UAV and HDD drilling string. He's working with Yueqin Huang, assistant professor of information science technology, who leads the geophysical signal processing and Xuqing Wu, associate professor of computer information systems, responsible for integrating machine learning.

“Advanced subsurface sensing and characterization technologies are essential for the undergrounding of power lines,” says Chen in the release. “This initiative can enhance the grid's resilience against natural hazards such as wildfires and hurricanes.”

“If proven successful, our proposed look-ahead subsurface sensing system could significantly reduce the costs of horizontal directional drilling for installing underground utilities,” Chen continues. “Promoting HDD offers environmental advantages over traditional trenching methods and enhances the power grid’s resilience.”

Trending News