zeroing in on zero emissions

Houston researcher scores $500,000 award to continue on work on energy transition

UH's Jian Shi recently received the NSF's CAREER award, which will dole out $500,861 in funding through February 2029. Photo via UH.edu

A University of Houston professor and researcher is laser focused on his work within the energy transition, and National Science Foundation has taken note, awarding him over half a million dollars in funding.

Jian Shi, an assistant professor within the Cullen College of Engineering, recently received the NSF's CAREER award, which will dole out $500,861 in funding through February 2029.

The award was granted for his research, entitled “A Unified Zero-Carbon-Driven Design Framework for Accelerating Power Grid Deep Decarbonization.”

“One of the most major challenges inherent in energy transition is the cost. While reducing carbon emissions serves the best interest of society in the long run, the short-term financial burdens also need to be carefully evaluated to ensure that we have a safe, affordable, reliable and just transition for all,” Shi says in a UH news release. “This challenge has inspired me to work on the innovative framework of “ZERO-Accelerator.”

Shi's ZERO-Accelerator is focused on taking standard carbon-driven tools and integrating them into current power grid operational practices. Shi is the director and founder of SOAR, or the Smart and ZerO-Carbon Energy Analytics and Research Lab.

“It synthesizes interactions from multiple key stakeholders involved in the electricity ecosystem,” says Shi. “The framework considers how to manage carbon allowance allocation and trading for electricity producers, how to maintain a 24/7 zero-carbon power grid for power grid operators and how to enable consumers to understand their carbon footprint and participate in the zero-carbon grid operation.”

In his CAREER proposal, Shi explains that he is also contributing to training the future energy workforce. He adds that he shares this award with his colleagues.

“I believe no accomplishment is truly individual,” he says. “Rather, it is a collective triumph achieved through collaboration, support and shared dedication. As I reflect on the milestones I've reached, I am compelled to express my deepest gratitude to my esteemed colleagues whose unwavering commitment has been instrumental in not just my collective success, but our collective success as well."

Last summer, Shi mentored a UH team in the inaugural American-Made Carbon Management Collegiate Competition, hosted by the U.S. Department of Energy's Office of Fossil Energy and Carbon Management. The team, GreenHouston, took third place in the competition, securing a $5,000 cash prize.

Trending News

A View From HETI

The work is "poised to revolutionize our understanding of fundamental physics," according to Rice University. Photo via Rice.edu

A team of Rice University physicists has been awarded a prestigious grant from the Department of Energy's Office of Nuclear Physics for their work in high-energy nuclear physics and research into a new state of matter.

The five-year $15.5 million grant will go towards Rice physics and astronomy professor Wei Li's discoveries focused on the Compact Muon Solenoid (CMS), a large, general-purpose particle physics detector built on the Large Hadron Collider (LHC) at CERN, a European organization for nuclear research in France and Switzerland. The work is "poised to revolutionize our understanding of fundamental physics," according to a statement from Rice.

Li's team will work to develop an ultra-fast silicon timing detector, known as the endcap timing layer (ETL), that will provide upgrades to the CMS detector. The ETl is expected to have a time resolution of 30 picoseconds per particle, which will allow for more precise time-of-flight particle identification.

This will also help boost the performance of the High-Luminosity Large Hadron Collider (HL-LHC), which is scheduled to launch at CERN in 2029, allowing it to operate at about 10 times the luminosity than originally planned. The ETL also has applications for other colliders apart from the LHC, including the DOE’s electron-ion collider at the Brookhaven National Laboratory in Long Island, New York.

“The ETL will enable breakthrough science in the area of heavy ion collisions, allowing us to delve into the properties of a remarkable new state of matter called the quark-gluon plasma,” Li explained in a statement. “This, in turn, offers invaluable insights into the strong nuclear force that binds particles at the core of matter.”

The ETL is also expected to aid in other areas of physics, including the search for the Higgs particle and understanding the makeup of dark matter.

Li is joined on this work by co-principal investigator Frank Geurts and researchers Nicole Lewis and Mike Matveev from Rice. The team is collaborating with others from MIT, Oak Ridge National Lab, the University of Illinois Chicago and University of Kansas.

Last year, fellow Rice physicist Qimiao Si, a theoretical quantum physicist, earned the prestigious Vannevar Bush Faculty Fellowship grant. The five-year fellowship, with up to $3 million in funding, will go towards his work to establish an unconventional approach to create and control topological states of matter, which plays an important role in materials research and quantum computing.

Meanwhile, the DOE recently tapped three Houston universities to compete in its annual startup competition focused on "high-potential energy technologies,” including one team from Rice.

Trending News