fresh tech

Halliburton introduces new pump technology designed for geothermal

According to Halliburton, the pump will offer an “efficient, safe, and agile solution that streamlines geothermal operations and enhances overall performance.” Photo via halliburton.com

Houston-based Halliburton has introduced a new technology that is designed specifically for geothermal energy applications.

The Summit ESP GeoESP is an advanced submersible borehole and surface pump technology GeoESP lifting pumps, which address challenges related to the transport of fluids to the surface through electric submersible pumps (ESP).

According to a news release from Halliburton, the pump will offer an “efficient, safe, and agile solution that streamlines geothermal operations and enhances overall performance.”

The inlet design minimizes power consumption, protects the pump against solids, and tackles scale formation. GeoESP lifting pumps can withstand extreme conditions with the ability to operate at temperatures up to 220°C (428°F) and can resist scale, corrosion, and abrasion.

GeoESP lifting pumps also use standard pump dimensions customized to suit various geothermal well conditions. With that, Halliburton will also offer a digital approach to geothermal well management with the Intelevat data science-driven platform to empower operators with real-time diagnostics and visualizations of “smart” field data. Halliburton states the system will improve well operations, increase production, extend system run life,reduce energy consumption, and minimize shutdowns.

“With increased global focus on low carbon energy sources, we are using our many decades of geothermal production expertise to help our customers maximize safety and improve efficiency,” Vice President of Artificial Lift Greg Schneider says in the release. “GeoESP lifting pumps build upon our current system to minimize power usage and help push the boundaries of what is possible with more complex well designs.”

Recently, more Houston-based companies have invested in geothermal technologies. GA Drilling and ZeroGeo Energy, a Swiss company specializing in renewable energy, announced a 12-megawatt Hot Dry Rock Geothermal Power Plant (Project THERMO), which is the first of several geothermal power and geothermal energy storage projects in Europe.

Additionally, Fervo Energy is exploring the potential for a geothermal energy system at Naval Air Station Fallon in Nevada. Sage Geosystems is working on an exploratory geothermal project for the Army’s Fort Bliss post in Texas. The Bliss project is the third U.S. Department of Defense geothermal initiative in the Lone Star State.

The Department of Energy announced two major initiatives that will reach the Gulf of Texas and Louisiana in U.S. Secretary of Energy Jennifer M. Granholm's address at CERAWeek by S&P Global in March. The Department of Energy’s latest Pathways to Commercial Liftoff report are initiatives established to provide investors with information of how specific energy technologies commercialize and what challenges they each have to overcome as they scale.

"Geothermal has such enormous potential,” she previously said during her address at CERAWEEK. “If we can capture the 'heat beneath our feet,' it can be the clean, reliable, base-load scalable power for everybody from industries to households."

Trending News

A View From HETI

Syzygy Plasmonics has secured an offtake agreement for 100% of the production from its first commercial SAF plant. Photo courtesy of Syzygy.

Houston-based Syzygy Plasmonics has secured a six-year official offtake agreement for the entire production volume of its first commercial-scale biogas-to-sustainable aviation fuel project in Uruguay, known as NovaSAF-1.

SP Developments Uruguay S.A., a subsidiary of Syzygy, entered into the agreement with Singapore-based commodity company Trafigura, according to a news release. There is also an option for Trafigura to purchase additional volumes from future Syzygy projects.

The first deliveries from the landmark SAF facility are expected in 2028.

“This agreement marks a critical step in our journey toward commercial-scale impact and disrupting the SAF market,” Trevor Best, CEO of Syzygy Plasmonics, said in the news release. “With a signed offtake agreement from a global leader like Trafigura, and after having successfully completed FEED engineering in December, we're now ready to secure financing for the construction of NovaSAF-1 and move our technology from potential into production."

The NovaSAF-1 project will be located in Durazno, Uruguay. The facility will be the world's first electrified biogas-to-SAF facility producing renewable and advanced compliant SAF. Syzygy estimates that the project will produce over 350,000 gallons of SAF annually. The facility is expected to produce SAF with at least an 80 percent reduction in carbon intensity compared to Jet A fuel.

It’s backed by Uruguay’s largest dairy and agri-energy operations, Estancias del Lago. It will also work with Houston-based Velocys, which will provide Fischer-Tropsch technology for the project. Fischer-Tropsch technology converts synthesis gas into liquid hydrocarbons, which is key for producing synthetic fuels like SAF.

Trending News