According to Halliburton, the pump will offer an “efficient, safe, and agile solution that streamlines geothermal operations and enhances overall performance.” Photo via halliburton.com

Houston-based Halliburton has introduced a new technology that is designed specifically for geothermal energy applications.

The Summit ESP GeoESP is an advanced submersible borehole and surface pump technology GeoESP lifting pumps, which address challenges related to the transport of fluids to the surface through electric submersible pumps (ESP).

According to a news release from Halliburton, the pump will offer an “efficient, safe, and agile solution that streamlines geothermal operations and enhances overall performance.”

The inlet design minimizes power consumption, protects the pump against solids, and tackles scale formation. GeoESP lifting pumps can withstand extreme conditions with the ability to operate at temperatures up to 220°C (428°F) and can resist scale, corrosion, and abrasion.

GeoESP lifting pumps also use standard pump dimensions customized to suit various geothermal well conditions. With that, Halliburton will also offer a digital approach to geothermal well management with the Intelevat data science-driven platform to empower operators with real-time diagnostics and visualizations of “smart” field data. Halliburton states the system will improve well operations, increase production, extend system run life,reduce energy consumption, and minimize shutdowns.

“With increased global focus on low carbon energy sources, we are using our many decades of geothermal production expertise to help our customers maximize safety and improve efficiency,” Vice President of Artificial Lift Greg Schneider says in the release. “GeoESP lifting pumps build upon our current system to minimize power usage and help push the boundaries of what is possible with more complex well designs.”

Recently, more Houston-based companies have invested in geothermal technologies. GA Drilling and ZeroGeo Energy, a Swiss company specializing in renewable energy, announced a 12-megawatt Hot Dry Rock Geothermal Power Plant (Project THERMO), which is the first of several geothermal power and geothermal energy storage projects in Europe.

Additionally, Fervo Energy is exploring the potential for a geothermal energy system at Naval Air Station Fallon in Nevada. Sage Geosystems is working on an exploratory geothermal project for the Army’s Fort Bliss post in Texas. The Bliss project is the third U.S. Department of Defense geothermal initiative in the Lone Star State.

The Department of Energy announced two major initiatives that will reach the Gulf of Texas and Louisiana in U.S. Secretary of Energy Jennifer M. Granholm's address at CERAWeek by S&P Global in March. The Department of Energy’s latest Pathways to Commercial Liftoff report are initiatives established to provide investors with information of how specific energy technologies commercialize and what challenges they each have to overcome as they scale.

"Geothermal has such enormous potential,” she previously said during her address at CERAWEEK. “If we can capture the 'heat beneath our feet,' it can be the clean, reliable, base-load scalable power for everybody from industries to households."

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

New report maps Houston workforce development strategies as companies transition to cleaner energy

to-do list

The University of Houston’s Energy University latest study with UH’s Division of Energy and Innovation with stakeholders from the energy industry, academia have released findings from a collaborative white paper, titled "Workforce Development for the Future of Energy.”

UH Energy’s workforce analysis found that the greatest workforce gains occur with an “all-of-the-above” strategy to address the global shift towards low-carbon energy solutions. This would balance electrification and increased attention to renewables with liquid fuels, biomass, hydrogen, carbon capture, utilization and storage commonly known as CCUS, and carbon dioxide removal, according to a news release.

The authors of the paper believe this would support economic and employment growth, which would leverage workers from traditional energy sectors that may lose jobs during the transition.

The emerging hydrogen ecosystem is expected to create about 180,000 new jobs in the greater Houston area, which will offer an average annual income of approximately $75,000. Currently, 40 percent of Houston’s employment is tied to the energy sector.

“To sustain the Houston region’s growth, it’s important that we broaden workforce participation and opportunities,” Ramanan Krishnamoorti, vice president of energy and innovation at UH, says in a news release. “Ensuring workforce readiness for new energy jobs and making sure we include disadvantaged communities is crucial.”

Some of the key takeaways include strategies that include partnering for success, hands-on training programs, flexible education pathways, comprehensive support services, and early and ongoing outreach initiatives.

“The greater Houston area’s journey towards a low-carbon future is both a challenge and an opportunity,” Krishnamoorti continues. “The region’s ability to adapt and lead in this new era will depend on its commitment to collaboration, innovation, and inclusivity. By preparing its workforce, engaging its communities, and leveraging its industrial heritage, we can redefine our region and continue to thrive as a global energy leader.”

The study was backed by federal funding from the Department of the Treasury through the State of Texas under the Resources and Ecosystems Sustainability, Tourist Opportunities, and Revived Economies of the Gulf Coast States Act of 2012.

Houston geothermal startup selects Texas location for first energy storage facility

major milestone

Houston-based geothermal energy startup Sage Geosystems has teamed up with a utility provider for an energy storage facility in the San Antonio metro area.

The three-megawatt EarthStore facility will be on land controlled by the San Miguel Electric Cooperative, which produces electricity for customers in 47 South Texas counties. The facility will be located in the town of Christine, near the cooperative’s coal-fired power plant.

Sage says its energy storage system will be paired with solar energy to supply power for the grid operated by the Electric Reliability Council of Texas (ERCOT). The facility is set to open later this year.

“Once operational, our EarthStore facility in Christine will be the first geothermal energy storage system to store potential energy deep in the earth and supply electrons to a power grid,” Cindy Taff, CEO of Sage Geosystems, says in a news release.

The facility is being designed to store geothermal energy during six- to 10-hour periods.

“Long-duration energy storage is crucial for the ERCOT utility grid, especially with the increasing integration of intermittent wind and solar power generation,” says Craig Courter, CEO of the San Miguel Electric Cooperative.