big yikes

Texas falls short on list of most energy efficient states

Texas ranked as the 40th most energy efficient state, according to a recent report. Photo via Getty Images

The Lone Star State again failed to perform well on an annual ranking of the most energy efficient states.

Texas ranked as the 40th most energy efficient state, according to WalletHub's annual report. Only eight continental US states ranked poorer, including Oklahoma, Tennessee, Louisiana, Arkansas, Mississippi, Alabama, West Virginia, and South Carolina, respectively.

Source: WalletHub

The report looked at home and auto energy efficiency, as the report's methodology outlines.

"We obtained the former by calculating the ratio of total residential energy consumption to annual degree days. For the latter, we divided the annual vehicle miles driven by gallons of gasoline consumed to determine vehicle-fuel efficiency and measured annual vehicle miles driven per capita to determine transportation efficiency," reads the study.

Texas scored a 36 out of 50 points for home energy efficiency and 41 points for auto energy efficiency.

The report's experts were asked about federal incentivization of energy efficiency for customers, and all were in agreement that this is key to the future of energy.

"Energy conservation is a big piece that needs to be tackled efficiently for us to make any progress on energy transition. Incentivizing consumers and businesses is necessary but only if there is a clear demonstration of changes in personal and business work/living habits that reduce the energy footprint," says Sanjay Srinivasan, director at EMS Energy Institute and professor at Pennsylvania State University.

Another recent report looked at Texas from the solar perspective, and Houston failed to place in the top 15 most "solar" cities in the United States. However, Austin led the way for Texas, ranking the No. 3 most “solar” city in the U.S., per Thumbtack. Austin, with the highest net-new solar panel installations within the past year in Texas, split up four Californian cities in the top five. Only San Diego (No. 1) and Los Angeles (No. 2) outranked Austin.

While there's room for improvement for efficiency, Texas has among the best prices for energy, as WalletHub found in a report this summer. Texas ranked No. 49 on the list of the 2023 Most Energy-Expensive States.

Trending News

A View From HETI

Rice University scientists' “recharge-to-recycle” reactor has major implications for the electric vehicle sector. Photo courtesy Jorge Vidal/Rice University.

Engineers at Rice University have developed a cleaner, innovative process to turn end-of-life lithium-ion battery waste into new lithium feedstock.

The findings, recently published in the journal Joule, demonstrate how the team’s new “recharge-to-recycle” reactor recharges the battery’s waste cathode materials to coax out lithium ions into water. The team was then able to form high-purity lithium hydroxide, which was clean enough to feed directly back into battery manufacturing.

The study has major implications for the electric vehicle sector, which significantly contributes to the waste stream from end-of-life battery packs. Additionally, lithium tends to be expensive to mine and refine, and current recycling methods are energy- and chemical-intensive.

“Directly producing high-purity lithium hydroxide shortens the path back into new batteries,” Haotian Wang, associate professor of chemical and biomolecular engineering, co-corresponding author of the study and co-founder of Solidec, said in a news release. “That means fewer processing steps, lower waste and a more resilient supply chain.”

Sibani Lisa Biswal, chair of Rice’s Department of Chemical and Biomolecular Engineering and the William M. McCardell Professor in Chemical Engineering, also served as co-corresponding author on the study.

“We asked a basic question: If charging a battery pulls lithium out of a cathode, why not use that same reaction to recycle?” Biswal added in the release. “By pairing that chemistry with a compact electrochemical reactor, we can separate lithium cleanly and produce the exact salt manufacturers want.”

The new process also showed scalability, according to Rice. The engineers scaled the device to 20 square centimeters, then ran a 1,000-hour stability test and processed 57 grams of industrial black mass supplied by industry partner Houston-based TotalEnergies. The results produced lithium hydroxide that was more than 99 percent pure. It also maintained an average lithium recovery rate of nearly 90 percent over the 1,000-hour test, showing its durability. The process also worked across multiple battery chemistries, including lithium iron phosphate, lithium manganese oxide and nickel-manganese-cobalt variants.

Looking ahead, the team plans to scale the process and consider ways it can sustain high efficiency for greater lithium hydroxide concentrations.

“We’ve made lithium extraction cleaner and simpler,” Biswal added in the release. “Now we see the next bottleneck clearly. Tackle concentration, and you unlock even better sustainability.

Trending News