Texas ranked in the bottom half on WalletHub's list of the most energy-efficient states. Photo via unsplash.

Texas has room to improve when it comes to energy efficiency, recent data from WalletHub shows.

The personal finance website ranked Texas at No. 35 on the latest Most & Least Energy-Efficient States list. Texas improved by one spot on the 2025 report, after coming in at No. 36 last year.

The report measured and ranked the efficiency of auto energy and home energy consumption in the 48 U.S. mainland states based on data from the U.S. Census Bureau, National Climatic Data Center, U.S. Energy Information Administration and the U.S. Department of Transportation – Federal Highway Administration.

Texas earned an overall score of 50.60. It was ranked No. 27 for home energy efficiency and No. 41 for auto efficiency. By comparison, No. 1-ranked Vermont earned a score of 85.30, ranking No. 2 for home energy and No. 6 for out energy.

The top five overall states included:

  • No. 1 Vermont
  • No. 2 California
  • No. 3 Washington
  • No. 4 New York
  • No. 5 Massachusetts

South Dakota earned the top rank for home energy efficiency, and Massachusetts earned the top rank for energy efficiency.

“Energy efficiency doesn’t just help save the planet – it also helps save you money by lowering the amount of electricity, gas, oil or other types of energy you need to consume. While there are some steps you can take to become more energy-efficient on your own, living in the right area can give you a big boost," WalletHub analyst Chip Lupo said in the report. "For example, certain states have much better public transportation systems that minimize your need to drive, at least in big cities. Some places also have better-constructed buildings that retain heat better during the winter or stay cooler during the summer.”

According to the report, some progress is being made in increasing energy efficiency across the country. The U.S. Energy Information Administration expects 26 percent of electricity generation in 2026 will come from renewables. A number of them are being developed in the Houston area, including recent announcements like the Pleasure Island Power Collective in Port Arthur.

Still, Houston earned an abysmal ranking on WalletHub's greenest cities in the U.S. report earlier this year, coming in at No. 99 out of 100. Read more here.

Houston had two big strikes against it on WalletHub's Greenest Cities in America report. Photo via Getty Images.

Houston ranks No. 99 out of 100 on new report of greenest U.S. cities

Sustainability Slide

Houstonians may be feeling blue about a new ranking of the greenest cities in the U.S.

Among the country’s 100 largest cities based on population, Houston ranks 99th across 28 key indicators of “green” living in a new study from personal finance website WalletHub. The only city with a lower ranking is Glendale, Arizona. Last year, Houston landed at No. 98 on the WalletHub list.

“‘Green’ living means a choice to engage in cleaner, more sustainable habits in order to preserve the planet as much as possible,” WalletHub says.

Among the study’s ranking factors are the amount of greenhouse gas emissions per capita, the number of “smart energy” policies, and the presence of “green job” programs.

In the study, Houston received an overall score of 35.64 out of 100. WalletHub put its findings into four buckets, with Houston ranked 100th in the environment and transportation categories, 56th in the lifestyle and policy category, and 52nd in the energy sources category.

In the environment category, Houston has two big strikes against it. The metro area ranks among the 10 worst places for ozone pollution (No. 7) and year-round particle pollution (No. 8), according to the American Lung Association’s 2025 list of the most polluted cities.

In the WalletHub study, San Jose, California, earns the honor of being the country’s greenest city. It’s followed by Washington, D.C.; Oakland, California; Irvine, California; and San Francisco.

“There are plenty of things that individuals can do to adopt a green lifestyle, from recycling to sharing rides to installing solar panels on their homes,” WalletHub analyst Chip Lupo said in the report. “However, living in one of the greenest cities can make it even easier to care for the environment, due to sustainable laws and policies, access to locally grown produce, and infrastructure that allows residents to use vehicles less often. The greenest cities also are better for your health due to superior air and water quality.”

Texas fell four spots on WalletHub's annual Greenest States report. Photo via Pexels

Texas falls lower on national ranking of greenest states for 2025

room to improve

Texas dropped in the rankings on WalletHub's Greenest States 2025 report.

The report, released last month, considered 28 relevant metrics—from air and water quality to the number of alternative fuel stations and green buildings per capita—to call out states doing the best (and worst) jobs of caring for the environment.

Texas came in at No. 42 out of 50, with a total score of 42.54 out of 100. Last year, the Lone Star State ranked No. 38 with a score of 50.40 based on 25 metrics.

Texas' poor ranking was driven by its last-placed ranking, coming in at No. 50, for overall environmental quality. It was tied for No. 45 for air quality and ranked No. 46 for water quality, which helped comprise the overall environmental quality score.

Other metrics fell closer toward the middle of the pack. The state ranked No. 32 for eco-friendly behaviors and No. 39 for climate-change contributions.

California also fell on the annual report. While the state claimed the top spot in 2024, it came in at No. 7 this year. Vermont, which came in second in 2024, was named the greenest state in 2025.

Hawaii, which didn't crack the top five last year, was ranked No. 2 on the 2025 report. New York, Maryland and Maine rounded out the top five this year.

West Virginia was the country's least green state again this year, followed by Louisiana, Kentucky, Alabama and Mississippi.

The report also showed that Democrat-led states ranked around No. 12 on average, whereas Republican states fell at around No. 33.

While the WalletHub report seems bleak for Texas, others have shown more positive signs for the state. Texas was ranked slightly above average in a recent ranking of the best states for sustainable development. A recently released U.S. Energy Storage Monitor shows that Texas led all states and surpassed California in the fourth quarter of 2024 by installing 1.2 gigawatts of utility-scale energy storage for solar and wind power.

Still, WalletHub also recently ranked Houston No. 98 out of 100 of the largest cities on its Greenest Cities in America report. Read more here.

Source: WalletHub
The report ranked each state on both its home and auto efficiency. Photo via Getty Images

Here's how Texas ranks as an energy efficient state

by the numbers

How energy efficient is the Lone Star State? A new report finds that Texas has some room for improvement in that department.

In its 2024 "Most & Least Energy-Efficient States" report, WalletHub ranks Texas at No. 36 out of the 50 states with a score of 47.5 out of 100 points.

The report ranked each state on both its home and auto efficiency. Texas came in No. 32 for home energy efficiency, which factored in the National Weather Service's annual degree days.

For auto efficiency, Texas came in at No. 38, but ranked No. 43 for vehicle-fuel efficiency specifically and No. 20 for transportation efficiency.

"We divided the annual vehicle miles driven by gallons of gasoline consumed to determine vehicle-fuel efficiency and measured annual vehicle miles driven per capita to determine transportation efficiency," according to WalletHub, which used data from the U.S. Census Bureau, National Climatic Data Center, U.S. Energy Information Administration, and U.S. Department of Transportation - Federal Highway Administration.


Source: WalletHub

Texas receives mixed reviews when it comes to energy reports from WalletHub. A June report found that Texas ranked as the fourth cheapest state for energy, and in April the state was found to be the thirteenth least green state.

Zooming in on Houston, the reports don't look any better. Earlier this month, the Bayou City was ranked the third worst metro when it comes to the country's greenest cities.

Yikes, Houston is very far from being considered among the greenest cities in the country. Photo via Getty Images

Houston receives abysmal ranking on list of greenest cities in the US

room for improvement

Bad news, Houston. The Bayou City is the third worst metro when it comes to the country's greenest cities.

According to WalletHub's recently released Greenest Cities in America report, Houston is No. 98 out of 100 of the largest cities that were ranked in the study, which was based on information from the U.S. Census Bureau, U.S. Environmental Protection Agency, The Trust for Public Land, U.S. Department of Energy - The Alternative Fuels Data Center, and more.

“There are plenty of things that individuals can do to adopt a green lifestyle, from recycling to sharing rides to installing solar panels on their homes. However, living in one of the greenest cities can make it even easier to care for the environment, due to sustainable laws and policies, access to locally-grown produce and infrastructure that allows residents to use vehicles less often," says Chip Lupo, WalletHub Analyst. "The greenest cities also are better for your health due to superior air and water quality.”

Houston scored 36.88 points out of 100, and comes in dead last on the environment ranking. Here's how the city performs when it comes to the other metrics:

  • No. 87 for transportation
  • No. 52 for energy sources
  • No. 61 for lifestyle and policy
  • No. 91 for greenhouse-gas emissions per capita
  • No. 30 for percent of green space
  • No. 86 for median air quality index
  • No. 97 for annual excess fuel consumption
  • No. 56 for percent of commuters who drive
  • No. 39 for walk score
  • No. 33 for farmers markets per capita

The big winners on the report are mostly on the West Coast. Of the top 10, six cities are from California. These are the greenest cities, per the report:

  1. San Diego, California
  2. Washington, D.C.
  3. Honolulu, Hawaii
  4. San Francisco, California
  5. San Jose, California
  6. Seattle, Washington
  7. Oakland, California
  8. Portland, Oregon
  9. Fremont, California
  10. Irvine, California
Texas isn't seen on the list until Austin, which ranked No. 26. The rest of the major Lone Star State major metros include San Antonio at No. 44, Fort Worth at No. 76, and Dallas at No. 81.
While this report is pretty damning, there's not a general consensus that all hope is lost for Houston when it comes to being green. Last year, the city was ranked as having the lowest carbon footprint, based on a report from Park Sleep Fly.

However, WalletHub's report has pretty consistently ranked Houston low on the list. Last year, Houston was slightly higher up at No. 95. In 2022 and 2021, the city claimed the No. 93 spot.

Texas's evolving energy landscape means affordability for residents, a new report finds. Photo via Pexels

Here's how Texas ranks when it comes to energy affordability

$$$

The Lone Star State is an economical option when it comes to energy costs, one report has found.

WalletHub, a personal finance website, analyzed energy affordability across the 50 states in its new report, Energy Costs by State in 2024, which looked at residential energy types: electricity, natural gas, motor fuel and home heating oil.

Texas ranked as the fourth cheapest state for energy, or No. 47 in the report that sorted by most expensive average monthly energy bill. Texans' average energy cost per month is $437, the report found.


Source: WalletHub

Here's how Texas ranked in key categories, with No. 1 being the most expensive and No. 50 being the cheapest:

  • No. 27 – price of electricity
  • No. 15 – price of natural gas
  • No. 44 – natural-gas consumption per consumer
  • No. 40 – price of motor fuel
  • No. 16 – motor-fuel consumption per driver
  • No. 49 – home heating-oil consumption per consumer

With the most expensive state — Wyoming — being over four times the cost compared to the cheapest state — New Mexico, the difference between energy costs between states varies greatly, but the reason for that isn't exactly a mystery.

“Energy prices vary from state to state based on several factors including energy sources, supply and demand, energy regulation, regulatory authorities, competition, and the free market," explains expert Justin Perryman, a professor at Washington University School of Law. "[States] such as Texas have a deregulated electricity marketplace. Missouri and 17 other states have a regulated energy market. In deregulated markets there are typically more energy providers which often leads to more competition and lower prices; however, other factors can contribute to energy prices.

"In regulated markets, the state energy regulatory authority sets the prices of energy," he continues. "It can be politically unpopular to raise energy costs, so those states may benefit from lower energy costs. Factors such as the state’s commitment to renewable energy may also factor into energy costs. Proximity to less expensive energy sources can lower energy costs.”

Texas's evolving energy landscape has been well documented, and earlier this year the state's solar energy generation surpassed the output by coal, according to a report from the Institute For Energy Economics and Financial Analysis.

A separate report found that, when compared to other states, Texas will account for the biggest share of new utility-scale solar capacity and new battery storage capacity in 2024. According to the U.S. Energy Information Administration, the state will make up 35 percent of new utility-scale solar capacity in the U.S. this year.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston energy expert: How the U.S. can turn carbon into growth

Guets Column

For the past 40 years, climate policy has often felt like two steps forward, one step back. Regulations shift with politics, incentives get diluted, and long-term aspirations like net-zero by 2050 seem increasingly out of reach. Yet greenhouse gases continue to rise, and the challenges they pose are not going away.

This matters because the costs are real. Extreme weather is already straining U.S. power grids, damaging homes, and disrupting supply chains. Communities are spending more on recovery while businesses face rising risks to operations and assets. So, how can the U.S. prepare and respond?

The Baker Institute Center for Energy Studies (CES) points to two complementary strategies. First, invest in large-scale public adaptation to protect communities and infrastructure. Second, reframe carbon as a resource, not just a waste stream to be reduced.

Why Focusing on Emissions Alone Falls Short

Peter Hartley argues that decades of global efforts to curb emissions have done little to slow the rise of CO₂. International cooperation is difficult, the costs are felt immediately, and the technologies needed are often expensive. Emissions reduction has been the central policy tool for decades, and it has been neither sufficient nor effective.

One practical response is adaptation, which means preparing for climate impacts we can’t avoid. Some of these measures are private, taken by households or businesses to reduce their own risks, such as farmers shifting crop types, property owners installing fire-resistant materials, or families improving insulation. Others are public goods that require policy action. These include building stronger levees and flood defenses, reinforcing power grids, upgrading water systems, revising building codes, and planning for wildfire risks. Such efforts protect people today while reducing long-term costs, and they work regardless of the source of extreme weather. Adaptation also does not depend on global consensus; each country, state, or city can act in its own interest. Many of these measures even deliver benefits beyond weather resilience, such as stronger infrastructure and improved security against broader threats.

McKinsey research reinforces this logic. Without a rapid scale-up of climate adaptation, the U.S. will face serious socioeconomic risks. These include damage to infrastructure and property from storms, floods, and heat waves, as well as greater stress on vulnerable populations and disrupted supply chains.

Making Carbon Work for Us

While adaptation addresses immediate risks, Ken Medlock points to a longer-term opportunity: turning carbon into value.

Carbon can serve as a building block for advanced materials in construction, transportation, power transmission, and agriculture. Biochar to improve soils, carbon composites for stronger and lighter products, and next-generation fuels are all examples. As Ken points out, carbon-to-value strategies can extend into construction and infrastructure. Beyond creating new markets, carbon conversion could deliver lighter and more resilient materials, helping the U.S. build infrastructure that is stronger, longer-lasting, and better able to withstand climate stress.

A carbon-to-value economy can help the U.S. strengthen its manufacturing base and position itself as a global supplier of advanced materials.

These solutions are not yet economic at scale, but smart policies can change that. Expanding the 45Q tax credit to cover carbon use in materials, funding research at DOE labs and universities, and supporting early markets would help create the conditions for growth.

Conclusion

Instead of choosing between “doing nothing” and “net zero at any cost,” we need a third approach that invests in both climate resilience and carbon conversion.

Public adaptation strengthens and improves the infrastructure we rely on every day, including levees, power grids, water systems, and building standards that protect communities from climate shocks. Carbon-to-value strategies can complement these efforts by creating lighter, more resilient carbon-based infrastructure.

CES suggests this combination is a pragmatic way forward. As Peter emphasizes, adaptation works because it is in each nation’s self-interest. And as Ken reminds us, “The U.S. has a comparative advantage in carbon. Leveraging it to its fullest extent puts the U.S. in a position of strength now and well into the future.”

-----------

Scott Nyquist is a senior advisor at McKinsey & Company and vice chairman, Houston Energy Transition Initiative of the Greater Houston Partnership. The views expressed herein are Nyquist's own and not those of McKinsey & Company or of the Greater Houston Partnership. This article originally appeared on LinkedIn.

UH launches new series on AI’s impact on the energy sector

where to be

The University of Houston's Energy Transition Institute has launched a new Energy in Action Seminar Series that will feature talks focused on the intersection of the energy industry and digitization trends, such as AI.

The first event in the series took place earlier this month, featuring Raiford Smith, global market lead for power & energy for Google Cloud, who presented "AI, Energy, and Data Centers." The talk discussed the benefits of widespread AI adoption for growth in traditional and low-carbon energy resources.

Future events include:

“Through this timely and informative seminar series, ETI will bring together energy professionals, researchers, students, and anyone working in or around digital innovation in energy," Debalina Sengupta, chief operating officer of ETI, said in a news release. "We encourage industry members and students to register now and reap the benefits of participating in both the seminar and the reception, which presents a fantastic opportunity to stay ahead of industry developments and build a strong network in the Greater Houston energy ecosystem.”

The series is slated to continue throughout 2026. Each presentation is followed by a one-hour networking reception. Register for the next event here.

ExxonMobil pauses plans for $7B hydrogen plant in Baytown

project on pause

As anticipated, Spring-based oil and gas giant ExxonMobil has paused plans to build a low-hydrogen plant in Baytown, Chairman and CEO Darren Woods told Reuters.

“The suspension of the project, which had already experienced delays, reflects a wider slowdown in efforts by traditional oil and gas firms to transition to cleaner energy sources as many of the initiatives struggle to turn a profit,” Reuters reported.

Woods signaled during ExxonMobil’s second-quarter earnings call that the company was weighing whether it would move forward with the proposed $7 billion plant.

The Biden-era Inflation Reduction Act established a 10-year incentive, the 45V tax credit, for production of clean hydrogen. But under President Trump’s One Big Beautiful Bill Act, the period for beginning construction of low-carbon hydrogen projects that qualify for the tax credit has been compressed. The Inflation Reduction Act called for construction to begin by 2033. The Big Beautiful Bill changed the construction start time to early 2028.

“While our project can meet this timeline, we’re concerned about the development of a broader market, which is critical to transition from government incentives,” Woods said during the earnings call.

Woods had said ExxonMobil was figuring out whether a combination of the 45Q tax credit for carbon capture projects and the revised 45V tax credit would enable a broader market for low-carbon hydrogen.

“If we can’t see an eventual path to a market-driven business, we won’t move forward with the [Baytown] project,” Woods told Wall Street analysts.

“We knew that helping to establish a brand-new product and a brand-new market initially driven by government policy would not be easy or advance in a straight line,” he added.

ExxonMobil announced in 2022 that it would build the low-carbon hydrogen plant at its refining and petrochemical complex in Baytown. The company had indicated the plant would start initial production in 2027.

ExxonMobil had said the Baytown plant would produce up to 1 billion cubic feet of hydrogen per day made from natural gas, and capture and store more than 98 percent of the associated carbon dioxide. The plant would have been capable of storing as much as 10 million metric tons of CO2 per year.