The new "Arch of Time" in Houston’s East End will generate 400,000 kilowatt-hours of power annually. Photo courtesy Land Art Generator Initiative.

Local and state leaders shared updated plans this month on a first-of-its-kind structure that uses art to generate solar energy.

Slated to be located at Mason Park in Houston’s East End, the new "Arch of Time" is a freestanding sundial art installation that will generate 400,000 kilowatt-hours of power per year using 60,000 solar photovoltaic cells on its south-facing exterior.

The project will be part of a larger pavilion at the park and is being led by the renewable energy organization Land Art Generator Initiative (LAGI). Architect Riccardo Mariano will design the space. It will be funded by donations and cost $20 million, organizers say.

The project, originally known as "Arco del Tiempo," was announced in 2023. At the time, the city shared the installation would be installed at Guadalupe Plaza Park in 2024.

The project's latest update was announced during Houston City Hall’s Earth Day 2025, where organizers described it as "a monument to Houston's past, present, and future leadership as the energy capital of the world."

The 100-foot structure will also serve as a 25,000-square-foot shaded area, or microclimate, during hot days. It will also feature a stage performance space and a power hub for emergencies. Due to the artwork's north opening and south narrowing, it is also expected to help channel the breezes, according to LAGI.

The organization says it is also expected to generate enough power to fuel all of Mason Park.

“Mason Park will soon, perhaps become the first major park in the country that is powered entirely by the sun,” Houston City Council Member Joaquin Martinez said at the news conference. “The economic benefits are clear.”

Former Houston Park and Recreation director Joe Turner selected the East End park as the location of the arch and believes it could be used as a STEM tool for students.

“All the STEM education that can come from the way we use the solar collectors, the way it has a water collection system that's going to collect the runoff water, there's so much we can do to teach kids STEM,” said in a Houston Park and Recreation Department video.

The project is about two years away from being completed. LAGI says the Arch of Time will be the “first public art project of its scale to stand as a net-positive contribution to a sustainable climate.”

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Rice University spinout lands $500K NSF grant to boost chip sustainability

cooler computing

HEXAspec, a spinout from Rice University's Liu Idea Lab for Innovation and Entrepreneurship, was recently awarded a $500,000 National Science Foundation Partnership for Innovation grant.

The team says it will use the funding to continue enhancing semiconductor chips’ thermal conductivity to boost computing power. According to a release from Rice, HEXAspec has developed breakthrough inorganic fillers that allow graphic processing units (GPUs) to use less water and electricity and generate less heat.

The technology has major implications for the future of computing with AI sustainably.

“With the huge scale of investment in new computing infrastructure, the problem of managing the heat produced by these GPUs and semiconductors has grown exponentially. We’re excited to use this award to further our material to meet the needs of existing and emerging industry partners and unlock a new era of computing,” HEXAspec co-founder Tianshu Zhai said in the release.

HEXAspec was founded by Zhai and Chen-Yang Lin, who both participated in the Rice Innovation Fellows program. A third co-founder, Jing Zhang, also worked as a postdoctoral researcher and a research scientist at Rice, according to HEXAspec's website.

The HEXASpec team won the Liu Idea Lab for Innovation and Entrepreneurship's H. Albert Napier Rice Launch Challenge in 2024. More recently, it also won this year's Energy Venture Day and Pitch Competition during CERAWeek in the TEX-E student track, taking home $25,000.

"The grant from the NSF is a game-changer, accelerating the path to market for this transformative technology," Kyle Judah, executive director of Lilie, added in the release.

---

This article originally ran on InnovationMap.

Rice research team's study keeps CO2-to-fuel devices running 50 times longer

new findings

In a new study published in the journal Science, a team of Rice University researchers shared findings on how acid bubbles can improve the stability of electrochemical devices that convert carbon dioxide into useful fuels and chemicals.

The team led by Rice associate professor Hoatian Wang addressed an issue in the performance and stability of CO2 reduction systems. The gas flow channels in the systems often clog due to salt buildup, reducing efficiency and causing the devices to fail prematurely after about 80 hours of operation.

“Salt precipitation blocks CO2 transport and floods the gas diffusion electrode, which leads to performance failure,” Wang said in a news release. “This typically happens within a few hundred hours, which is far from commercial viability.”

By using an acid-humidified CO2 technique, the team was able to extend the operational life of a CO2 reduction system more than 50-fold, demonstrating more than 4,500 hours of stable operation in a scaled-up reactor.

The Rice team made a simple swap with a significant impact. Instead of using water to humidify the CO2 gas input into the reactor, the team bubbled the gas through an acid solution such as hydrochloric, formic or acetic acid. This process made more soluble salt formations that did not crystallize or block the channels.

The process has major implications for an emerging green technology known as electrochemical CO2 reduction, or CO2RR, that transforms climate-warming CO2 into products like carbon monoxide, ethylene, or alcohols. The products can be further refined into fuels or feedstocks.

“Using the traditional method of water-humidified CO2 could lead to salt formation in the cathode gas flow channels,” Shaoyun Hao, postdoctoral research associate in chemical and biomolecular engineering at Rice and co-first author, explained in the news release. “We hypothesized — and confirmed — that acid vapor could dissolve the salt and convert the low solubility KHCO3 into salt with higher solubility, thus shifting the solubility balance just enough to avoid clogging without affecting catalyst performance.”

The Rice team believes the work can lead to more scalable CO2 electrolyzers, which is vital if the technology is to be deployed at industrial scales as part of carbon capture and utilization strategies. Since the approach itself is relatively simple, it could lead to a more cost-effective and efficient solution. It also worked well with multiple catalyst types, including zinc oxide, copper oxide and bismuth oxide, which are allo used to target different CO2RR products.

“Our method addresses a long-standing obstacle with a low-cost, easily implementable solution,” Ahmad Elgazzar, co-first author and graduate student in chemical and biomolecular engineering at Rice, added in the release. “It’s a step toward making carbon utilization technologies more commercially viable and more sustainable.”

A team led by Wang and in collaboration with researchers from the University of Houston also shared findings on salt precipitation buildup and CO2RR in a recent edition of the journal Nature Energy. Read more here.