Energy co. makes $100,000 donation to Houston hospital

energizing ALS research

Energy Transfer, a Dallas-based midstream energy company, just donated $100,000 to Houston Methodist. Photo via Getty Images

Where do energy transition and life-saving medicine meet? In Texas, of course.

Energy Transfer, a Dallas-based midstream energy company, just donated $100,000 to Houston Methodist. The grant is part of a $200,000 gift that has spanned the past two years. The goal? To eradicate the neurological disorder, ALS (amyotrophic lateral sclerosis). There is currently no cure for ALS. For roughly 90 percent of patients, there’s no known genetic cause, meaning the disease can strike anyone.

Houston Methodist currently has numerous clinical trials taking place with the goal to slow or halt the progression of the degenerative ailment.

“Every dollar donated to ALS research is a beacon of hope for those battling the disease,” said Chris Curia, executive vice president and chief human resources officer at Energy Transfer. “Those affected by ALS deserve a chance at a better life. We are hopeful this donation brings us one step closer to a world without this disease.”

Houston Methodist is home to the first multidisciplinary care clinic for ALS patients in the region and is actively engaged in both clinical and basic scientific research to support people battling ALS.

“We appreciate Energy Transfer’s generosity in our efforts to improve the quality of life and to provide hope for ALS patients and their families. Their continued commitment to Houston Methodist’s ongoing ALS research is truly transformational,” says Stanley H. Appel, M.D., a pioneering neurologist at Houston Methodist whose lab focuses on neurodegenerative diseases, including ALS.

Energy Transfer’s gift will help to support one particularly promising trial of a combination therapy that is currently moving into Phase 2. In its first phase, the therapy was found to safely slow disease progression in four ALS patients over a six-month period. Those patients had no significant progression of their disease during the trial. Prior to receiving the therapy, each of the patients had reported declining abilities to perform daily tasks.

Energy Transfer’s good deed could mean the world not only to patients at Houston Methodist, but to ending ALS altogether.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Geothermal energy startup's $600M deal fuels surge in Houston VC funding

by the numbers

The venture capital haul for Houston-area startups jumped 23 percent from 2023 to 2024, according to the latest PitchBook-NVCA Venture Monitor.

The fundraising total for startups in the region climbed from $1.49 billion in 2023 to $1.83 billion in 2024, PitchBook-NVCA Venture Monitor data shows.

Roughly half of the 2024 sum, $914.3 million, came in the fourth quarter. By comparison, Houston-area startups collected $291.3 million in VC during the fourth quarter of 2023.

Among the Houston-area startups contributing to the impressive VC total in the fourth quarter of 2024 was geothermal energy startup Fervo Energy. PitchBook attributes $634 million in fourth-quarter VC to Fervo, with fulfillment services company Cart.com at $50 million, and chemical manufacturing platform Mstack and superconducting wire manufacturer MetOx International at $40 million each.

Across the country, VC deals total $209 billion in 2024, compared with $162.2 billion in 2023. Nearly half (46 percent) of all VC funding in North America last year went to AI startups, PitchBook says. PitchBook’s lead VC analyst for the U.S., Kyle Stanford, says that AI “continues to be the story of the market.”

PitchBook forecasts a “moderately positive” 2025 for venture capital in the U.S.

“That does not mean that challenges are gone. Flat and down rounds will likely continue at higher paces than the market is accustomed to. More companies will likely shut down or fall out of the venture funding cycle,” says PitchBook. “However, both of those expectations are holdovers from 2021.”

--

This story originally appeared on our sister site, InnovationMap.com.

Houston researchers harness dialysis for new wastewater treatment process

waste not

By employing medical field technology dialysis, researchers at Rice University and the Guangdong University of Technology in China uncovered a new way to treat high-salinity organic wastewater.

In the medical field, dialysis uses a machine called a dialyzer to filter waste and excess fluid from the blood. In a study published in Nature Water, Rice’s team found that mimicking dialysis can separate salts from organic substances with minimal dilution of the wastewater, addressing some of the limitations of previous methods.

The researchers say this has the potential to lower costs, recover valuable resources across a range of industrial sectors and reduce environmental impacts.

“Traditional methods often demand a lot of energy and require repeated dilutions,” Yuanmiaoliang “Selina” Chen, a co-first author and postdoctoral associate in Elimelech’s lab at Rice, said in a news release. “Dialysis eliminates many of these pain points, reducing water consumption and operational overheads.”

Various industries generate high-salinity organic wastewater, including petrochemical, pharmaceutical and textile manufacturing. The wastewater’s high salt and organic content can present challenges for existing treatment processes. Biological and advanced oxidation treatments become less effective with higher salinity levels. Thermal methods are considered “energy intensive” and susceptible to corrosion.

Ultimately, the researchers found that dialysis effectively removed salt from water without requiring large amounts of fresh water. This process allows salts to move into the dialysate stream while keeping most organic compounds in the original solution. Because dialysis relies on diffusion instead of pressure, salts and organics cross the membrane at different speeds, making the separation method more efficient.

“Dialysis was astonishingly effective in separating the salts from the organics in our trials,” Menachem Elimelech, a corresponding author on the study and professor of civil and environmental engineering and chemical and biomolecular engineering at Rice, said in a news release. “It’s an exciting discovery with the potential to redefine how we handle some of our most intractable wastewater challenges.”