energizing ALS research

Energy co. makes $100,000 donation to Houston hospital

Energy Transfer, a Dallas-based midstream energy company, just donated $100,000 to Houston Methodist. Photo via Getty Images

Where do energy transition and life-saving medicine meet? In Texas, of course.

Energy Transfer, a Dallas-based midstream energy company, just donated $100,000 to Houston Methodist. The grant is part of a $200,000 gift that has spanned the past two years. The goal? To eradicate the neurological disorder, ALS (amyotrophic lateral sclerosis). There is currently no cure for ALS. For roughly 90 percent of patients, there’s no known genetic cause, meaning the disease can strike anyone.

Houston Methodist currently has numerous clinical trials taking place with the goal to slow or halt the progression of the degenerative ailment.

“Every dollar donated to ALS research is a beacon of hope for those battling the disease,” said Chris Curia, executive vice president and chief human resources officer at Energy Transfer. “Those affected by ALS deserve a chance at a better life. We are hopeful this donation brings us one step closer to a world without this disease.”

Houston Methodist is home to the first multidisciplinary care clinic for ALS patients in the region and is actively engaged in both clinical and basic scientific research to support people battling ALS.

“We appreciate Energy Transfer’s generosity in our efforts to improve the quality of life and to provide hope for ALS patients and their families. Their continued commitment to Houston Methodist’s ongoing ALS research is truly transformational,” says Stanley H. Appel, M.D., a pioneering neurologist at Houston Methodist whose lab focuses on neurodegenerative diseases, including ALS.

Energy Transfer’s gift will help to support one particularly promising trial of a combination therapy that is currently moving into Phase 2. In its first phase, the therapy was found to safely slow disease progression in four ALS patients over a six-month period. Those patients had no significant progression of their disease during the trial. Prior to receiving the therapy, each of the patients had reported declining abilities to perform daily tasks.

Energy Transfer’s good deed could mean the world not only to patients at Houston Methodist, but to ending ALS altogether.

Trending News

A View From HETI

Researchers from Rice University say their recent findings could revolutionize power grids, making energy transmission more efficient. Image via Getty Images.

A new study from researchers at Rice University, published in Nature Communications, could lead to future advances in superconductors with the potential to transform energy use.

The study revealed that electrons in strange metals, which exhibit unusual resistance to electricity and behave strangely at low temperatures, become more entangled at a specific tipping point, shedding new light on these materials.

A team led by Rice’s Qimiao Si, the Harry C. and Olga K. Wiess Professor of Physics and Astronomy, used quantum Fisher information (QFI), a concept from quantum metrology, to measure how electron interactions evolve under extreme conditions. The research team also included Rice’s Yuan Fang, Yiming Wang, Mounica Mahankali and Lei Chen along with Haoyu Hu of the Donostia International Physics Center and Silke Paschen of the Vienna University of Technology. Their work showed that the quantum phenomenon of electron entanglement peaks at a quantum critical point, which is the transition between two states of matter.

“Our findings reveal that strange metals exhibit a unique entanglement pattern, which offers a new lens to understand their exotic behavior,” Si said in a news release. “By leveraging quantum information theory, we are uncovering deep quantum correlations that were previously inaccessible.”

The researchers examined a theoretical framework known as the Kondo lattice, which explains how magnetic moments interact with surrounding electrons. At a critical transition point, these interactions intensify to the extent that the quasiparticles—key to understanding electrical behavior—disappear. Using QFI, the team traced this loss of quasiparticles to the growing entanglement of electron spins, which peaks precisely at the quantum critical point.

In terms of future use, the materials share a close connection with high-temperature superconductors, which have the potential to transmit electricity without energy loss, according to the researchers. By unblocking their properties, researchers believe this could revolutionize power grids and make energy transmission more efficient.

The team also found that quantum information tools can be applied to other “exotic materials” and quantum technologies.

“By integrating quantum information science with condensed matter physics, we are pivoting in a new direction in materials research,” Si said in the release.

Trending News