guest column

Houston expert looks at wholesale pricing trends occurring this summer

PJ Popovic of Houston-based Rhythm Energy looks back on summer heatwave trends. Photo via Shutterstock

This summer’s heatwave had a lot of Texans feeling uncomfortable, and it was not just the sweltering triple-digit temperatures, and even higher heat indexes, that had us sweating. With much of the state hitting over 100 degrees for weeks, air conditioners were working overtime to keep homes and businesses cool. That added load, coupled with general demand growth, put a heavy burden on the Texas power grid — and that puts the state in a precarious position.

We all remember Uri in February 2021, when an inch-thick coat of ice hampered power companies' ability to generate power, leading to widespread and lasting power outages across the state. The recent heat wave, however, was different. This past summer, the concern for Texas and ERCOT (the Electric Reliability Council of Texas) was not whether generation would fail, but whether generation capacity could keep pace with peak demand. And what would be the wholesale electricity price to ensure that it did.

The generation mix

As robust as our electricity grid is, on any given day the balance between power supply and demand remains fairly tenuous. In its summer Seasonal Assessment of Resource Adequacy, ERCOT projected its power-generation capacity at 97,000 MW. However, that daily capacity number can be misleading.

As Texas’ generation mix leans to a greater degree toward renewable power and we retire more coal and natural gas fired generation plants, our generation output becomes less predictable. Operators can practically flip a switch to turn on fossil fuel generation plants and quickly dispatch its power. Renewable generation, on the other hand, is intermittent and its output by no means guaranteed. While the state’s current combined wind and solar generation can potentially deliver up to 30,000 megawatts, if the right weather conditions are not there, neither is the power.

Meanwhile, the demand for power in Texas has increased dramatically. In recent years, we have seen significant population growth, electrification as well as new business expansion throughout the state. Some of the businesses moving here draw huge loads of power from the grid — think about the companies mining digital currency or Elon Musk’s SpaceX facilities in Central Texas, just to name a few. A considerable demand curve increase occurring simultaneously with the move to more renewable generation challenges the delicate balance of the grid.

Trends and lessons learned from the summer’s wholesale electricity pricing

ERCOT manages the flow of electricity across the state of Texas. It also oversees the wholesale bulk power market whereby generators are paid primarily for the electricity they supply to the grid. To incentivize the development of future generating capacity, ERCOT employs scarcity pricing — that means that commodity prices escalate dramatically as supply becomes constrained.

This summer, ERCOT faced unprecedented demand with daily electricity usage frequently nearing generation capacity limits. Consequently, electricity prices were notably volatile, often skyrocketing exponentially.

ERCOT employs a complex series of pricing mechanisms to establish its real-time price for each megawatt. A deep dive analysis (INSERT LINK) found that the Locational Margin Prices, or LMP, were significantly higher than previous years, even when reserve generation capacities were robust and fuel prices were similar to or lower than prior years.

So, what contributed to the higher than usual prices? Certainly, changes to ERCOT operations, market design tweaks, and transmission constraints contributed, but market prices were most driven by generators’ offer pricing curves.

Now, more than four months removed from the start of the heat wave in June, we can see how different various technologies priced their offerings. The data suggests that a segment of resources, notably battery storage, set their offer prices near or at the system-wide offer price cap. Given the anticipated rise of batteries as the primary dispatchable resource within the grid in coming years, this pricing behavior warrants closer scrutiny.

Offer pricing curves appear to have created a semblance of shortage pricing, evident in the heightened LMPs, even when reserve capacities were not especially scarce. This would suggest that a significant portion of the dispatchable capacity integrated into ERCOT was priced at levels typically seen only in grid emergency conditions

Key questions

Why are the recently added dispatchable resources garnering such high offer prices? Are there operational hurdles in integrating and dispatching batteries, challenges in market design, inherent limitations of batteries on the grid, or other factors contributing to these high offer prices from battery resources? Given that batteries are poised to play a central role in the transition to renewable energy sources, answering these questions will be key.

The current pricing trends in the ERCOT market, if sustained, could lead to increased electricity rates and/or increased price volatility for end-users, underscoring the importance of monitoring and addressing these market dynamics.

------

PJ Popovic is the CEO of Houston-based Rhythm Energy.

Trending News

A View From HETI

Greenhouse gases continue to rise, and the challenges they pose are not going away. Photo via Getty Images

For the past 40 years, climate policy has often felt like two steps forward, one step back. Regulations shift with politics, incentives get diluted, and long-term aspirations like net-zero by 2050 seem increasingly out of reach. Yet greenhouse gases continue to rise, and the challenges they pose are not going away.

This matters because the costs are real. Extreme weather is already straining U.S. power grids, damaging homes, and disrupting supply chains. Communities are spending more on recovery while businesses face rising risks to operations and assets. So, how can the U.S. prepare and respond?

The Baker Institute Center for Energy Studies (CES) points to two complementary strategies. First, invest in large-scale public adaptation to protect communities and infrastructure. Second, reframe carbon as a resource, not just a waste stream to be reduced.

Why Focusing on Emissions Alone Falls Short

Peter Hartley argues that decades of global efforts to curb emissions have done little to slow the rise of CO₂. International cooperation is difficult, the costs are felt immediately, and the technologies needed are often expensive. Emissions reduction has been the central policy tool for decades, and it has been neither sufficient nor effective.

One practical response is adaptation, which means preparing for climate impacts we can’t avoid. Some of these measures are private, taken by households or businesses to reduce their own risks, such as farmers shifting crop types, property owners installing fire-resistant materials, or families improving insulation. Others are public goods that require policy action. These include building stronger levees and flood defenses, reinforcing power grids, upgrading water systems, revising building codes, and planning for wildfire risks. Such efforts protect people today while reducing long-term costs, and they work regardless of the source of extreme weather. Adaptation also does not depend on global consensus; each country, state, or city can act in its own interest. Many of these measures even deliver benefits beyond weather resilience, such as stronger infrastructure and improved security against broader threats.

McKinsey research reinforces this logic. Without a rapid scale-up of climate adaptation, the U.S. will face serious socioeconomic risks. These include damage to infrastructure and property from storms, floods, and heat waves, as well as greater stress on vulnerable populations and disrupted supply chains.

Making Carbon Work for Us

While adaptation addresses immediate risks, Ken Medlock points to a longer-term opportunity: turning carbon into value.

Carbon can serve as a building block for advanced materials in construction, transportation, power transmission, and agriculture. Biochar to improve soils, carbon composites for stronger and lighter products, and next-generation fuels are all examples. As Ken points out, carbon-to-value strategies can extend into construction and infrastructure. Beyond creating new markets, carbon conversion could deliver lighter and more resilient materials, helping the U.S. build infrastructure that is stronger, longer-lasting, and better able to withstand climate stress.

A carbon-to-value economy can help the U.S. strengthen its manufacturing base and position itself as a global supplier of advanced materials.

These solutions are not yet economic at scale, but smart policies can change that. Expanding the 45Q tax credit to cover carbon use in materials, funding research at DOE labs and universities, and supporting early markets would help create the conditions for growth.

Conclusion

Instead of choosing between “doing nothing” and “net zero at any cost,” we need a third approach that invests in both climate resilience and carbon conversion.

Public adaptation strengthens and improves the infrastructure we rely on every day, including levees, power grids, water systems, and building standards that protect communities from climate shocks. Carbon-to-value strategies can complement these efforts by creating lighter, more resilient carbon-based infrastructure.

CES suggests this combination is a pragmatic way forward. As Peter emphasizes, adaptation works because it is in each nation’s self-interest. And as Ken reminds us, “The U.S. has a comparative advantage in carbon. Leveraging it to its fullest extent puts the U.S. in a position of strength now and well into the future.”

-----------

Scott Nyquist is a senior advisor at McKinsey & Company and vice chairman, Houston Energy Transition Initiative of the Greater Houston Partnership. The views expressed herein are Nyquist's own and not those of McKinsey & Company or of the Greater Houston Partnership. This article originally appeared on LinkedIn.

Trending News