EVERYDAY ENERGY

Another Houston sports team commits to fighting climate change

Looks like green really is the new black in a city that’s known for being all blue. Photo courtesy of Zach Tarrant, HoustonTexans.com

The Houston Texans rocked the football world in early May with their historic back-to-back first-round all-star offense/defense NFL draft picks, but that’s not the only groundbreaking news they had planned this month. In partnership with 1PointFive, the Texans’ Preferred Carbon Removal Partner, the team announced the Touchdown for Trees program to recapture carbon emissions – and the hearts of fans.

“As part of our partnership with 1PointFive, we kicked off our Touchdown for Trees initiative last week at Hermann Park Conservancy,” Houston Texans Senior Vice President of Partnerships Jerry Angel tells EnergyCapitalHTX. “We’re looking forward to continuing to work together to make a difference across our community during the 2023 Season.”

For every touchdown scored by the Texans in the 2022, 2023, and 2024 seasons, the team pledges to plant 1.5 trees in the greater Houston area. To kick off the initiative, Houston Texans staff and cheerleaders gathered in Hermann Park Conservancy on May 11 to plant 25 inaugural trees. The group also removed invasive species from the area to eliminate competition for the newly planted trees and restore native habitat conditions.

Planting trees to fight climate change has gathered significant momentum in recent years, as each individual tree can offset approximately 22 pounds of carbon emissions per year over its first 20 years of life, according to conservative calculations from OneTreePlanted.org. The One Trillion Tree Initiative, announced at the 2020 World Economic Forum in January 2023, could effectively reduce carbon emissions by 20% year-over-year for the next two decades through reforestation efforts.

Like other carbon capture solutions, reforestation must be pursued with proper planning and care, so as not to waste time nor resources. But many tout reforestation as the simplest way to reduce carbon emissions and meet all 17 of the United Nations’ Sustainable Development Goals simultaneously.

With this commitment to reforestation, the Houston Texans join the Astros, Rockets, Dash, and Dynamo in a collective effort to fight climate change. Earlier this spring, the Houston Astros partnered with 1PointFive in an agreement to purchase carbon dioxide removal credits from the new Direct Air Capture facility near Odessa in Ector County, TX.

Like the Texans, the soccer teams of Houston are donating trees for each victory achieved this calendar year. In partnership with Shell Energy, the Dynamo and Dash have already committed to 1,750 new trees from their 5 aggregate wins this spring.

Additionally, each of the homes of these Houston teams follows in the footsteps of Houston’s original green arena, the Toyota Center. One of 10 Green NBA arenas to earn LEED certification, the home of the Houston Rockets boasts energy efficient lighting, electric submeters, and an abundance of trees and vegetation in an urban setting to reduce greenhouse gases by over 3,000 tons annually.

Shell Energy is giving the home of the Dynamo and Dash a decarbonization facelift this year, with energy efficient LED-lighting throughout, installation of EV charging stations, and the use of on-site renewable energy generation systems.

Similar efforts continue to roll out at Minute Maid Park and NRG Stadium, including food sustainability programs, dedicated recycling for aluminum, plastic, and cardboard, and complete conversion to more efficient lighting solutions on the field, in the bathrooms, and even out in the parking lots.

Whether rooting for the home team or cheering on the visitors, fans that attend Houston events at these stadiums and arenas benefit from the knowledge and experience of local talent stewarding such energy transition initiatives. Maybe it’s time to bring back the historic chant of the Oilers, with a modern twist, “go blue–and green!”

Trending News

A View From HETI

No critical minerals, no modern economy. Getty images

If you’re reading this on a phone, driving an EV, flying in a plane, or relying on the power grid to keep your lights on, you’re benefiting from critical minerals. These are the building blocks of modern life. Things like copper, lithium, nickel, rare earth elements, and titanium, they’re found in everything from smartphones to solar panels to F-35 fighter jets.

In short: no critical minerals, no modern economy.

These minerals aren’t just useful, they’re essential. And in the U.S., we don’t produce enough of them. Worse, we’re heavily dependent on countries that don’t always have our best interests at heart. That’s a serious vulnerability, and we’ve done far too little to fix it.

Where We Use Them and Why We’re Behind

Let’s start with where these minerals show up in daily American life:

  • Electric vehicles need lithium, cobalt, and nickel for batteries.
  • Wind turbines and solar panels rely on rare earths and specialty metals.
  • Defense systems require titanium, beryllium, and rare earths.
  • Basic infrastructure like power lines and buildings depend on copper and aluminum.

You’d think that something so central to the economy, and to national security, would be treated as a top priority. But we’ve let production and processing capabilities fall behind at home, and now we’re playing catch-up.

The Reality Check: We’re Not in Control

Right now, the U.S. is deeply reliant on foreign sources for critical minerals, especially China. And it’s not just about mining. China dominates processing and refining too, which means they control critical links in the supply chain.

Gabriel Collins and Michelle Michot Foss from the Baker Institute lay all this out in a recent report that every policymaker should read. Their argument is blunt: if we don’t get a handle on this, we’re in trouble, both economically and militarily.

China has already imposed export controls on key rare earth elements like dysprosium and terbium which are critical for magnets, batteries, and defense technologies, in direct response to new U.S. tariffs. This kind of tit-for-tat escalation exposes just how much leverage we’ve handed over. If this continues, American manufacturers could face serious material shortages, higher costs, and stalled projects.

We’ve seen this movie before, in the pandemic, when supply chains broke and countries scrambled for basics like PPE and semiconductors. We should’ve learned our lesson.

We Do Have a Stockpile, But We Need a Strategy

Unlike during the Cold War, the U.S. no longer maintains comprehensive strategic reserves across the board, but we do have stockpiles managed by the Defense Logistics Agency. The real issue isn’t absence, it’s strategy: what to stockpile, how much, and under what assumptions.

Collins and Michot Foss argue for a more robust and better-targeted approach. That could mean aiming for 12 to 18 months worth of demand for both civilian and defense applications. Achieving that will require:

  • Smarter government purchasing and long-term contracts
  • Strategic deals with allies (e.g., swapping titanium for artillery shells with Ukraine)
  • Financing mechanisms to help companies hold critical inventory for emergency use

It’s not cheap, but it’s cheaper than scrambling mid-crisis when supplies are suddenly cut off.

The Case for Advanced Materials: Substitutes That Work Today

One powerful but often overlooked solution is advanced materials, which can reduce our dependence on vulnerable mineral supply chains altogether.

Take carbon nanotube (CNT) fibers, a cutting-edge material invented at Rice University. CNTs are lighter, stronger, and more conductive than copper. And unlike some future tech, this isn’t hypothetical: we could substitute CNTs for copper wire harnesses in electrical systems today.

As Michot Foss explained on the Energy Forum podcast:

“You can substitute copper and steel and aluminum with carbon nanotube fibers and help offset some of those trade-offs and get performance enhancements as well… If you take carbon nanotube fibers and you put those into a wire harness… you're going to be reducing the weight of that wire harness versus a metal wire harness like we already use. And you're going to be getting the same benefit in terms of electrical conductivity, but more strength to allow the vehicle, the application, the aircraft, to perform better.”

By accelerating R&D and deployment of CNTs and similar substitutes, we can reduce pressure on strained mineral supply chains, lower emissions, and open the door to more secure and sustainable manufacturing.

We Have Tools. We Need to Use Them.

The report offers a long list of solutions. Some are familiar, like tax incentives, public-private partnerships, and fast-tracked permits. Others draw on historical precedent, like “preclusive purchasing,” a WWII tactic where the U.S. bought up materials just so enemies couldn’t.

We also need to get creative:

  • Repurpose existing industrial sites into mineral hubs
  • Speed up R&D for substitutes and recycling
  • Buy out risky foreign-owned assets in friendlier countries

Permitting remains one of the biggest hurdles. In the U.S., it can take 7 to 10 years to approve a new critical minerals project, a timeline that doesn’t match the urgency of our strategic needs. As Collins said on the Energy Forum podcast:

“Time kills deals... That’s why it’s more attractive generally to do these projects elsewhere.”

That’s the reality we’re up against. Long approval windows discourage investment and drive developers to friendlier jurisdictions abroad. One encouraging step is the use of the Defense Production Act to fast-track permitting under national security grounds. That kind of shift, treating permitting as a strategic imperative, must become the norm, not the exception.

It’s Time to Redefine Sustainability

Sustainability has traditionally focused on cutting carbon emissions. That’s still crucial, but we need a broader definition. Today, energy and materials security are just as important.

Countries are now weighing cost and reliability alongside emissions goals. We're also seeing renewed attention to recycling, biodiversity, and supply chain resilience.

Net-zero by 2050 is still a target. But reality is forcing a more nuanced discussion:

  • What level of warming is politically and economically sustainable?
  • What tradeoffs are we willing to make to ensure energy access and affordability?

The bottom line: we can’t build a clean energy future without secure access to materials. Recycling helps, but it’s not enough. We'll need new mines, new tech, and a more flexible definition of sustainability.

My Take: We’re Running Out of Time

This isn’t just a policy debate. It’s a test of whether we’ve learned anything from the past few years of disruption. We’re not facing an open war, but the risks are real and growing.

We need to treat critical minerals like what they are: a strategic necessity. That means rebuilding stockpiles, reshoring processing, tightening alliances, and accelerating permitting across the board.

It won’t be easy. But if we wait until a real crisis hits, it’ll be too late.

———

Scott Nyquist is a senior advisor at McKinsey & Company and vice chairman, Houston Energy Transition Initiative of the Greater Houston Partnership. The views expressed herein are Nyquist's own and not those of McKinsey & Company or of the Greater Houston Partnership. This article originally appeared on LinkedIn on April 11, 2025.


Trending News