taking notes

Things to know: Gastech returns, Fervo Energy secures loan, and apps open for Houston hardtech fellowship

This week, Gastech returns to Houston for the first time since 2019. Photo via Gastech Event/LinkedIn

Editor's note: Dive headfirst into the new week with three quick things to catch up on in Houston's energy transition.

Gastech returns to Houston this week

Gastech, billed as the world’s largest exhibition and conference for the natural gas, LNG, hydrogen, low carbon solutions, and climate technologies, returns to Houston beginning Tuesday, September 17. It'll be the first time the event takes place in Houston since 2019.

“Gastech is a global event that draws tens of thousands of attendees and millions of dollars in economic impact to its host city, and we are incredibly excited to have in Houston," Michael Heckman, president and CEO of Houston First Corp., says in a press release announcing the news last fall.

"The conversation around the future of the energy industry is a different one today than it was just five years ago when Gastech was last here," he continues. "We believe the role Houston is playing in leading the energy transition to a low carbon future makes this an ideal place to host this important global event and we look forward to expanding on the success we had in 2019 when Gastech returns."

The program's full agenda is available online and features a series of climate-focused panels on hydrogen, carbon capture, nuclear energy, grid stability, and more.

Activate Houston opens applications for 2025 cohort

Activate's application is live from now through October 23, and all founders of early-stage, research-backed hardtech companies in Houston are encouraged to apply. Photo via Getty Images

Applications are officially open for a hardtech-focused incubation and fellowship program's second Houston cohort.

Activate's application is live from now through October 23, and all founders of early-stage, research-backed hardtech companies in Houston are encouraged to apply. The Berkley, California-based program launched in Houston last year and recently named its inaugural Houston cohort.

“The Activate Fellowship provides an opportunity for approximately 50 scientists and engineers annually to transform into entrepreneurial leaders, derisk their technologies, define first markets, build teams, and secure follow-on funding,” says Activate’s executive managing director, Aimee Rose, in a news release. “With an average 30 percent annual growth in applications since 2015, we know there is high demand for what we do, and we’re excited to see the talent and impactful ideas that come through the pipeline this year.

The application is available online, and fellows will be selected in April of next year. The 2025 program will begin in June. Read more.

Big deal: Fervo Energy secures $100M for 'world’s largest geothermal energy plant'

Fervo Energy received $100 million loan for its Utah Cape Station project. Photo via fervoenergy.com

Houston-based geothermal energy company Fervo Energy has secured a $100 million bridge loan for the first phase of its ongoing project in Utah.

The loan came from an affiliate of Irvington, New York-based X-Caliber Rural Capital. Proceeds will support construction of Fervo’s Cape Station project, which is being touted as the world’s largest geothermal energy plant.

The first phase of Cape Station, which is on track to generate 90 megawatts of renewable energy, is expected to be completed in June 2026. Ultimately, the plant is supposed to supply 400 megawatts of clean energy by 2028 for customers in California.

“Helping this significant project advance and grow in rural America is a true testament to how investing in communities and businesses not only has local influence, but can have a global, long-lasting impact by promoting sustainability and stimulating rural economies,” Jordan Blanchard, co-founder of X-Caliber Rural Capital, says. Read more.

Trending News

A View From HETI

Greenhouse gases continue to rise, and the challenges they pose are not going away. Photo via Getty Images

For the past 40 years, climate policy has often felt like two steps forward, one step back. Regulations shift with politics, incentives get diluted, and long-term aspirations like net-zero by 2050 seem increasingly out of reach. Yet greenhouse gases continue to rise, and the challenges they pose are not going away.

This matters because the costs are real. Extreme weather is already straining U.S. power grids, damaging homes, and disrupting supply chains. Communities are spending more on recovery while businesses face rising risks to operations and assets. So, how can the U.S. prepare and respond?

The Baker Institute Center for Energy Studies (CES) points to two complementary strategies. First, invest in large-scale public adaptation to protect communities and infrastructure. Second, reframe carbon as a resource, not just a waste stream to be reduced.

Why Focusing on Emissions Alone Falls Short

Peter Hartley argues that decades of global efforts to curb emissions have done little to slow the rise of CO₂. International cooperation is difficult, the costs are felt immediately, and the technologies needed are often expensive. Emissions reduction has been the central policy tool for decades, and it has been neither sufficient nor effective.

One practical response is adaptation, which means preparing for climate impacts we can’t avoid. Some of these measures are private, taken by households or businesses to reduce their own risks, such as farmers shifting crop types, property owners installing fire-resistant materials, or families improving insulation. Others are public goods that require policy action. These include building stronger levees and flood defenses, reinforcing power grids, upgrading water systems, revising building codes, and planning for wildfire risks. Such efforts protect people today while reducing long-term costs, and they work regardless of the source of extreme weather. Adaptation also does not depend on global consensus; each country, state, or city can act in its own interest. Many of these measures even deliver benefits beyond weather resilience, such as stronger infrastructure and improved security against broader threats.

McKinsey research reinforces this logic. Without a rapid scale-up of climate adaptation, the U.S. will face serious socioeconomic risks. These include damage to infrastructure and property from storms, floods, and heat waves, as well as greater stress on vulnerable populations and disrupted supply chains.

Making Carbon Work for Us

While adaptation addresses immediate risks, Ken Medlock points to a longer-term opportunity: turning carbon into value.

Carbon can serve as a building block for advanced materials in construction, transportation, power transmission, and agriculture. Biochar to improve soils, carbon composites for stronger and lighter products, and next-generation fuels are all examples. As Ken points out, carbon-to-value strategies can extend into construction and infrastructure. Beyond creating new markets, carbon conversion could deliver lighter and more resilient materials, helping the U.S. build infrastructure that is stronger, longer-lasting, and better able to withstand climate stress.

A carbon-to-value economy can help the U.S. strengthen its manufacturing base and position itself as a global supplier of advanced materials.

These solutions are not yet economic at scale, but smart policies can change that. Expanding the 45Q tax credit to cover carbon use in materials, funding research at DOE labs and universities, and supporting early markets would help create the conditions for growth.

Conclusion

Instead of choosing between “doing nothing” and “net zero at any cost,” we need a third approach that invests in both climate resilience and carbon conversion.

Public adaptation strengthens and improves the infrastructure we rely on every day, including levees, power grids, water systems, and building standards that protect communities from climate shocks. Carbon-to-value strategies can complement these efforts by creating lighter, more resilient carbon-based infrastructure.

CES suggests this combination is a pragmatic way forward. As Peter emphasizes, adaptation works because it is in each nation’s self-interest. And as Ken reminds us, “The U.S. has a comparative advantage in carbon. Leveraging it to its fullest extent puts the U.S. in a position of strength now and well into the future.”

-----------

Scott Nyquist is a senior advisor at McKinsey & Company and vice chairman, Houston Energy Transition Initiative of the Greater Houston Partnership. The views expressed herein are Nyquist's own and not those of McKinsey & Company or of the Greater Houston Partnership. This article originally appeared on LinkedIn.

Trending News