what's trending

Top stories: Houston's big clean energy win, UH scores DOE deal, and more

Here's what Houston energy transition news trended this week. Photo via Pexels

Editor's note: From the Energy Tech Nexus opening to Texas scoring a win over California, these are the top headlines that resonated with EnergyCapital readers on social media and daily newsletter this week.

University of Houston selected for DOE-backed energy storage innovation initiative

The University of Houston has joined the Energy Storage Research Alliance, one of two DOE-backed energy innovation hubs. Photo via Getty Images

The University of Houston was selected for a new energy storage initiative from the United States Department of Energy.

UH is part of the Energy Storage Research Alliance (ESRA), which is one of the two energy innovation hubs that the DOE is creating with $125 million. The DOE will provide up to $62.5 million in ESRA funding over a span of five years.

“To fuel innovation and cultivate a sustainable and equitable energy future, all universities, government entities, industry and community partners have to work together,” Ramanan Krishnamoorti, vice president for energy and innovation at UH, says in a news release. “No one person or entity can achieve all this by themselves. As the Energy University and a Carnegie-designated Tier One research university, located in Houston — a center of diverse talent and experience from across the energy industry — UH has a unique advantage of continuing to build on Houston’s global leadership and demonstrating solutions at scale." Continue reading.

New research center at Rice aims to work toward strict EPA standards for forever chemicals

Rice University has established a new center that will work toward meeting the Environmental Protection Agency's strict standards for PFAS. Photo by Jeff Fitlow/Rice University

Rice University announced a new research center that will focus on per- and polyfluoroalkyl substances (PFAS) called the Rice PFAS Alternatives and Remediation Center (R-PARC).

R-PARC promises to unite industry, policy experts, researchers, and entrepreneurs to “foster collaboration and accelerate the development of innovative solutions to several PFAS challenges,” according to a news release. Challenges include comprehensive PFAS characterization and risk assessment, water treatment infrastructure upgrades, contaminated site remediation, and the safe alternatives development.

“We firmly believe that Rice is exceptionally well-positioned to develop disruptive technologies and innovations to address the global challenges posed by PFAS,” Rice President Reginald DesRoches says in a news release. “We look forward to deepening our relationship with ERDC and working together to address these critical challenges.” Continue reading.

Texas passes California on national report of top solar states

Texas has the most utility-scale solar capacity installed and is home to 20 percent of the overall U.S. solar fleet. Photo via Getty Images

For the first time, Texas has passed California in the second quarter of 2024 to become the top solar state in the country.

The American Clean Power Association's quarterly market report found that, by adding 3,293 megawatts of new solar year-to-date, Texas has the most utility-scale solar capacity installed, comprising 20 percent of the overall U.S. solar fleet. The American Clean Power Association, which represents over 800 energy storage, wind, utility-scale solar, transmission, and clean hydrogen companies, found that Texas is home to 21,932 megawatts of capacity,

By utilizing clean energy initiatives, Texas included 1.6 gigawatts of new solar, 574 megawatts of storage, and 366 megawatts of onshore wind. With more than 28,000 megawatts, Texas had the highest volume of clean power development capacity in the second quarter. About 163,000 megawatts of capacity overall are in the works throughout the United States. Texas ranks No. 1 for total operating wind capacity and total operating solar capacity, and comes in second for operating storage capacity. Continue reading.

Houston PE firm raises $1.4B to invest in sustainable infrastructure

Five Point Energy closed its oversubscribed Five Point Energy Fund IV at $1.4 billion. Photo via Getty Images

A local private equity firm announced its latest round of funding that it plans on deploying into the energy transition infrastructure space.

Five Point Energy closed its oversubscribed Five Point Energy Fund IV at $1.4 billion in cumulative capital commitments. The new fund continues the firm's strategy of deploying capital into "an undercapitalized market and attractive long-term value generation," per a news release.

The firm is led by David Capobianco, CEO and managing partner, and Matthew Morrow, COO and managing partner.

"The closing of Fund IV is an endorsement of our team's demonstrated strategy of establishing and operating best-in-class sustainable infrastructure platforms, including the highly successful initial public offering of LandBridge," Capobianco says in the release. Continue reading.

Houston leaders launch new downtown hub to support energy transition innovation

Energy Tech Nexus has opened in downtown Houston. Photo by Natalie Harms/EnergyCapital

Three Houston energy innovators have cut the ribbon on a new space for energy transition innovation.

The Energy Tech Nexus, located in the historic Niels Esperson Building at the corner of Travis and Rusk Avenue, opened on September 10, which was proclaimed Energy Tech Nexus Day by the city.

Jason Ethier and Juliana Garaizar, formerly in leadership roles at Greentown Labs, teamed up with Nada Ahmed, previously headed innovation and transformation at Aker Solutions, launched ETN as a community for energy transition startups. The new hub plans to host incubation programs, provide mentorship, and open doors to funding and strategic partnerships for its members. Continue reading.

Trending News

A View From HETI

Ahmad Elgazzar, Haotian Wang and Shaoyun Hao were members of a Rice University team that recently published findings on how acid bubbling can improve CO2 reduction systems. Photo courtesy Rice.

In a new study published in the journal Science, a team of Rice University researchers shared findings on how acid bubbles can improve the stability of electrochemical devices that convert carbon dioxide into useful fuels and chemicals.

The team led by Rice associate professor Hoatian Wang addressed an issue in the performance and stability of CO2 reduction systems. The gas flow channels in the systems often clog due to salt buildup, reducing efficiency and causing the devices to fail prematurely after about 80 hours of operation.

“Salt precipitation blocks CO2 transport and floods the gas diffusion electrode, which leads to performance failure,” Wang said in a news release. “This typically happens within a few hundred hours, which is far from commercial viability.”

By using an acid-humidified CO2 technique, the team was able to extend the operational life of a CO2 reduction system more than 50-fold, demonstrating more than 4,500 hours of stable operation in a scaled-up reactor.

The Rice team made a simple swap with a significant impact. Instead of using water to humidify the CO2 gas input into the reactor, the team bubbled the gas through an acid solution such as hydrochloric, formic or acetic acid. This process made more soluble salt formations that did not crystallize or block the channels.

The process has major implications for an emerging green technology known as electrochemical CO2 reduction, or CO2RR, that transforms climate-warming CO2 into products like carbon monoxide, ethylene, or alcohols. The products can be further refined into fuels or feedstocks.

“Using the traditional method of water-humidified CO2 could lead to salt formation in the cathode gas flow channels,” Shaoyun Hao, postdoctoral research associate in chemical and biomolecular engineering at Rice and co-first author, explained in the news release. “We hypothesized — and confirmed — that acid vapor could dissolve the salt and convert the low solubility KHCO3 into salt with higher solubility, thus shifting the solubility balance just enough to avoid clogging without affecting catalyst performance.”

The Rice team believes the work can lead to more scalable CO2 electrolyzers, which is vital if the technology is to be deployed at industrial scales as part of carbon capture and utilization strategies. Since the approach itself is relatively simple, it could lead to a more cost-effective and efficient solution. It also worked well with multiple catalyst types, including zinc oxide, copper oxide and bismuth oxide, which are allo used to target different CO2RR products.

“Our method addresses a long-standing obstacle with a low-cost, easily implementable solution,” Ahmad Elgazzar, co-first author and graduate student in chemical and biomolecular engineering at Rice, added in the release. “It’s a step toward making carbon utilization technologies more commercially viable and more sustainable.”

A team led by Wang and in collaboration with researchers from the University of Houston also shared findings on salt precipitation buildup and CO2RR in a recent edition of the journal Nature Energy. Read more here.

Trending News