what's trending

Houston law firm's Parisian expansion, a new drilling partnership, and more energy transition top stories

Here's what Houston energy transition news trended this week. Photo via Getty Images

Editor's note: From Bracewell's expansion into Paris to GA Drilling's partnership with Petrobras, these are the top headlines that resonated with EnergyCapital readers on social media and daily newsletter this week.

Petrobras teams up with Houston co. to improve efficiency in drilling

GA Drilling will work with Petrobras’ R&D center to roll out an autonomous drilling system. Photo via Getty Images

Slovakian geothermal drilling technology company GA Drilling, whose U.S. headquarters is in Houston, has teamed up with Brazilian energy giant Petrobras to reduce well construction costs and well-drilling risks.

Under the new partnership, GA Drilling will work with Petrobras’ R&D center to roll out an autonomous drilling system that enables drilling at offshore wells from a light vessel instead of a costlier semi-submarine or drill ship.

“Taken together, the benefits of our drilling technologies equal better efficiency, leading to lower costs, [a] smaller operational footprint, and ultimately lower risk overall,” Igor Kočiš, co-founder and CEO of GA Drilling, says in a news release. Continue reading.

Houston law firm expands energy practice to Paris

The new office will expand Bracewell's capabilities in France and the broader Europe, the Middle East and Africa region. Photo via Bracewell

It's not just United States athletes descending upon France this summer. A Houston-based law firm has announced the expansion of its energy team into the region.

Bracewell LLP has opened an office in Paris La Défense and named 11 energy and infrastructure lawyers from Norton Rose Fulbright to the new location, which will be focused on project development, M&A, and finance transactions in the energy and infrastructure sectors. The team will have an emphasis on renewable and conventional power, energy transition, oil and gas, and infrastructure in France — as well as Europe, the Middle East, and Africa. Continue reading.

Houston company secures $837M for trio of Texas energy storage projects

All three of Intersect Power's storage systems — Lumina I, Lumina II, and Radian — are expected to be online this year. Photo courtesy of Intersect

Houston-based clean energy company Intersect Power has wrapped up $837 million in financing for the construction and operation of three standalone battery energy storage systems in Texas.

The money came in the form of debt financing, construction debt, and tax equity. The projects qualify for tax credits under the federal Inflation Reduction Act. Backers of the financing include Deutsche Bank, Morgan Stanley, and affiliates of HPS Investment Partners. Continue reading.

Why this entrepreneur believes Houston should lead resilience technology alongside the energy transition

Ali Mostafavi, founder of Resilitix.AI, joins the Houston Innovators Podcast to discuss how he pivoted to provide important data amid Hurricane Beryl. Photo via tamu.edu

When it comes to developing resilience technology, Houston startup founder Ali Mostafavi knows he's in the right place.

Mostafavi, a civil and environmental engineering professor at Texas A&M University, co-founded Resilitix.AI two years ago, and with the help of his lab at A&M, has created a platform that brings publicly available data into AI algorithms to provide its partners near-real time information in storm settings.

"We are very excited that our company is Houston based," he says on the Houston Innovators Podcast. "We should not be just ground zero of disasters. We have to also be ground zero for solutions as well. I believe Houston should be the hub for resilience tech innovation as it is for energy transition. Continue reading.

Expert weighs in on fire protection standards in hydrogen industry growth

With the projected uptick of new hydrogen production projects, an expert explores hydrogen fire protection, reflects on the measures and standards established to mitigate risks, and more. Photo courtesy

As First State Hydrogen continues to advance its groundbreaking clean hydrogen production facility in the U.S., the spotlight intensifies as hydrogen becomes an increasingly key player in the energy transition.

With the projected uptick of new hydrogen production and handling projects, let's explore hydrogen fire protection, reflect on the measures and standards established to mitigate risks, and ensure that the hydrogen economy thrives. Continue reading.

Trending News

A View From HETI

Ahmad Elgazzar, Haotian Wang and Shaoyun Hao were members of a Rice University team that recently published findings on how acid bubbling can improve CO2 reduction systems. Photo courtesy Rice.

In a new study published in the journal Science, a team of Rice University researchers shared findings on how acid bubbles can improve the stability of electrochemical devices that convert carbon dioxide into useful fuels and chemicals.

The team led by Rice associate professor Hoatian Wang addressed an issue in the performance and stability of CO2 reduction systems. The gas flow channels in the systems often clog due to salt buildup, reducing efficiency and causing the devices to fail prematurely after about 80 hours of operation.

“Salt precipitation blocks CO2 transport and floods the gas diffusion electrode, which leads to performance failure,” Wang said in a news release. “This typically happens within a few hundred hours, which is far from commercial viability.”

By using an acid-humidified CO2 technique, the team was able to extend the operational life of a CO2 reduction system more than 50-fold, demonstrating more than 4,500 hours of stable operation in a scaled-up reactor.

The Rice team made a simple swap with a significant impact. Instead of using water to humidify the CO2 gas input into the reactor, the team bubbled the gas through an acid solution such as hydrochloric, formic or acetic acid. This process made more soluble salt formations that did not crystallize or block the channels.

The process has major implications for an emerging green technology known as electrochemical CO2 reduction, or CO2RR, that transforms climate-warming CO2 into products like carbon monoxide, ethylene, or alcohols. The products can be further refined into fuels or feedstocks.

“Using the traditional method of water-humidified CO2 could lead to salt formation in the cathode gas flow channels,” Shaoyun Hao, postdoctoral research associate in chemical and biomolecular engineering at Rice and co-first author, explained in the news release. “We hypothesized — and confirmed — that acid vapor could dissolve the salt and convert the low solubility KHCO3 into salt with higher solubility, thus shifting the solubility balance just enough to avoid clogging without affecting catalyst performance.”

The Rice team believes the work can lead to more scalable CO2 electrolyzers, which is vital if the technology is to be deployed at industrial scales as part of carbon capture and utilization strategies. Since the approach itself is relatively simple, it could lead to a more cost-effective and efficient solution. It also worked well with multiple catalyst types, including zinc oxide, copper oxide and bismuth oxide, which are allo used to target different CO2RR products.

“Our method addresses a long-standing obstacle with a low-cost, easily implementable solution,” Ahmad Elgazzar, co-first author and graduate student in chemical and biomolecular engineering at Rice, added in the release. “It’s a step toward making carbon utilization technologies more commercially viable and more sustainable.”

A team led by Wang and in collaboration with researchers from the University of Houston also shared findings on salt precipitation buildup and CO2RR in a recent edition of the journal Nature Energy. Read more here.

Trending News