tune in

Why this entrepreneur believes Houston should lead resilience technology alongside the energy transition

Ali Mostafavi, founder of Resilitix.AI, joins the Houston Innovators Podcast to discuss how he pivoted to provide important data amid Hurricane Beryl. Photo via tamu.edu

When it comes to developing resilience technology, Houston startup founder Ali Mostafavi knows he's in the right place.

Mostafavi, a civil and environmental engineering professor at Texas A&M University, co-founded Resilitix.AI two years ago, and with the help of his lab at A&M, has created a platform that brings publicly available data into AI algorithms to provide its partners near-real time information in storm settings.

"We are very excited that our company is Houston based," he says on the Houston Innovators Podcast. "We should not be just ground zero of disasters. We have to also be ground zero for solutions as well. I believe Houston should be the hub for resilience tech innovation as it is for energy transition.

"I think energy transition, climatetech, energy tech, and disaster tech go hand in hand," Mostafavi continues. "I feel that we are in the right place."

Earlier this month, Mostafavi got an unexpected chance to pilot his company's data-backed and artificial intelligence-powered platform — all while weathering one of Houston's most impactful storms.

As Hurricane Beryl came ashore with Houston on its path, Mostafavi says he had the opportunity to both test his technology and provide valuable information to his community during the storm.

"We were in the process of fine tuning some of our methods and algorithms behind our technology," Mostafavi says. "When disasters happen, you go to activation mode. We put our technology development and R&D efforts on hold and try to test our technology in an operational setting."

The platform provides its partners — right now, those include local and state organizations and emergency response teams — information on evacuation reports, street flooding, and even damage sustained based on satellite imagery. Mostafavi says that during Beryl, users were wondering how citizens were faring amid rising temperatures and power outages. The Resilitix team quickly pivoted to apply algorithms to hospital data to see which neighborhoods were experiencing high volumes of patients.

"We had the ability to innovate on the spot," Mostafavi says, adding that his own lack of power and internet was an additional challenge for the company. "When an event happens, we start receiving requests and questions. ... We had to be agile and adapt our methods to be responsive. Then at the same time, because we haven't tested it, we have to verify that we are confident (in the information we provide)."

On the episode, Mostafavi shares how Hurricane Harvey — which occurred shortly after Mostafavi moved to Houston — inspired the foundation of Resilitix, and he also explains how he plans to grow and scale the business.

———

This article originally ran on InnovationMap.

Trending News

A View From HETI

Greenhouse gases continue to rise, and the challenges they pose are not going away. Photo via Getty Images

For the past 40 years, climate policy has often felt like two steps forward, one step back. Regulations shift with politics, incentives get diluted, and long-term aspirations like net-zero by 2050 seem increasingly out of reach. Yet greenhouse gases continue to rise, and the challenges they pose are not going away.

This matters because the costs are real. Extreme weather is already straining U.S. power grids, damaging homes, and disrupting supply chains. Communities are spending more on recovery while businesses face rising risks to operations and assets. So, how can the U.S. prepare and respond?

The Baker Institute Center for Energy Studies (CES) points to two complementary strategies. First, invest in large-scale public adaptation to protect communities and infrastructure. Second, reframe carbon as a resource, not just a waste stream to be reduced.

Why Focusing on Emissions Alone Falls Short

Peter Hartley argues that decades of global efforts to curb emissions have done little to slow the rise of CO₂. International cooperation is difficult, the costs are felt immediately, and the technologies needed are often expensive. Emissions reduction has been the central policy tool for decades, and it has been neither sufficient nor effective.

One practical response is adaptation, which means preparing for climate impacts we can’t avoid. Some of these measures are private, taken by households or businesses to reduce their own risks, such as farmers shifting crop types, property owners installing fire-resistant materials, or families improving insulation. Others are public goods that require policy action. These include building stronger levees and flood defenses, reinforcing power grids, upgrading water systems, revising building codes, and planning for wildfire risks. Such efforts protect people today while reducing long-term costs, and they work regardless of the source of extreme weather. Adaptation also does not depend on global consensus; each country, state, or city can act in its own interest. Many of these measures even deliver benefits beyond weather resilience, such as stronger infrastructure and improved security against broader threats.

McKinsey research reinforces this logic. Without a rapid scale-up of climate adaptation, the U.S. will face serious socioeconomic risks. These include damage to infrastructure and property from storms, floods, and heat waves, as well as greater stress on vulnerable populations and disrupted supply chains.

Making Carbon Work for Us

While adaptation addresses immediate risks, Ken Medlock points to a longer-term opportunity: turning carbon into value.

Carbon can serve as a building block for advanced materials in construction, transportation, power transmission, and agriculture. Biochar to improve soils, carbon composites for stronger and lighter products, and next-generation fuels are all examples. As Ken points out, carbon-to-value strategies can extend into construction and infrastructure. Beyond creating new markets, carbon conversion could deliver lighter and more resilient materials, helping the U.S. build infrastructure that is stronger, longer-lasting, and better able to withstand climate stress.

A carbon-to-value economy can help the U.S. strengthen its manufacturing base and position itself as a global supplier of advanced materials.

These solutions are not yet economic at scale, but smart policies can change that. Expanding the 45Q tax credit to cover carbon use in materials, funding research at DOE labs and universities, and supporting early markets would help create the conditions for growth.

Conclusion

Instead of choosing between “doing nothing” and “net zero at any cost,” we need a third approach that invests in both climate resilience and carbon conversion.

Public adaptation strengthens and improves the infrastructure we rely on every day, including levees, power grids, water systems, and building standards that protect communities from climate shocks. Carbon-to-value strategies can complement these efforts by creating lighter, more resilient carbon-based infrastructure.

CES suggests this combination is a pragmatic way forward. As Peter emphasizes, adaptation works because it is in each nation’s self-interest. And as Ken reminds us, “The U.S. has a comparative advantage in carbon. Leveraging it to its fullest extent puts the U.S. in a position of strength now and well into the future.”

-----------

Scott Nyquist is a senior advisor at McKinsey & Company and vice chairman, Houston Energy Transition Initiative of the Greater Houston Partnership. The views expressed herein are Nyquist's own and not those of McKinsey & Company or of the Greater Houston Partnership. This article originally appeared on LinkedIn.

Trending News