coming soon

Houston-area company specializing in creating clean campuses announces new data center project

Crusoe Energy Systems announced its plans to build the 200 MW data center at the Lancium Clean Campus outside Abilene, Texas. Photo via lancium.com

A California AI infrastructure company has announced it's building a 200 megawatt data center in Texas and will work with The Woodlands-based Lancium, a decarbonization-focused energy technology company.

Crusoe Energy Systems LLC announced its plans to build the 200 MW data center at the Lancium Clean Campus outside Abilene, Texas. The two companies will work to bring the data center online in the coming months, reports Lancium in a news release. Once completed, the first phase will enable AI workloads at scale across 1.2 gigawatts of power capacity.

“Lancium’s mission to decarbonize compute for the most energy-intensive workloads and this scale and type of data center is game-changing,” Michael McNamara, co-founder and CEO of Lancium, says in the release. “Our energy management expertise, the integration of incremental storage and solar generation resources behind-the-meter at the campus, and Crusoe’s design approach will combine to deliver the maximum amount of green energy at the lowest possible cost, while bringing significant benefits to the Abilene community.”

Lancium's role will include "land acquisition, power interconnect, site engineering, renewables interconnect, and power orchestration," per the release. Crusoe will own and develop the data center, which is expected to go online in 2025.

“Data centers are rapidly evolving to support modern AI workloads, requiring new levels of high density rack space, direct-to-chip liquid cooling and unprecedented overall energy demands. We’ve designed this data center to enable the largest clusters of GPUs in the world to drive new breakthroughs in AI,” adds Chase Lochmiller, Crusoe’s co-founder and CEO. “Given its leadership in renewable energy and plans for the site, working with Lancium in Abilene presents a unique opportunity to sustainably power the future of AI and we’re thrilled to have the support of the city in this ambitious endeavor.”

According to the release, the project will feature direct-to-chip liquid cooling or rear-door heat exchangers and will be flexible enough to include air cooling. Once completed, each building within the data center will be able to operate up to 100,000 GPUs on a single integrated network fabric, according to the companies.

Lancium has raised $150 million since its founding in 2017, according to Crunchbase. Investors include Hanwha Solutions and SBI Group.

Trending News

A View From HETI

Houston researchers have uncovered why solid-state batteries break down and what could be done to slow the process. Photo via Getty Images.

A team of researchers from the University of Houston, Rice University and Brown University has uncovered new findings that could extend battery life and potentially change the electric vehicle landscape.

The team, led by Yan Yao, the Hugh Roy and Lillie Cranz Cullen Distinguished Professor of Electrical and Computer Engineering at UH, recently published its findings in the journal Nature Communications.

The work deployed a powerful, high-resolution imaging technique known as operando scanning electron microscopy to better understand why solid-state batteries break down and what could be done to slow the process.

“This research solves a long-standing mystery about why solid-state batteries sometimes fail,” Yao, corresponding author of the study, said in a news release. “This discovery allows solid-state batteries to operate under lower pressure, which can reduce the need for bulky external casing and improve overall safety.”

A solid-state battery replaces liquid electrolytes found in conventional lithium-ion cells with a solid separator, according to Car and Driver. They also boast faster recharging capabilities, better safety and higher energy density.

However, when it comes to EVs, solid-state batteries are not ideal since they require high external stack pressure to stay intact while operating.

Yao’s team learned that tiny empty spaces, or voids, form within the solid-state batteries and merge into a large gap, which causes them to fail. The team found that adding small amounts of alloying elements, like magnesium, can help close the voids and help the battery continue to function. The team captured it in real-time with high-resolution videos that showed what happens inside a battery while it’s working under a scanning electron microscope.

“By carefully adjusting the battery’s chemistry, we can significantly lower the pressure needed to keep it stable,” Lihong Zhao, the first author of this work, a former postdoctoral researcher in Yao’s lab and now an assistant professor of electrical and computer engineering at UH, said in the release. “This breakthrough brings solid-state batteries much closer to being ready for real-world EV applications.”

The team says it plans to build on the alloy concept and explore other metals that could improve battery performance in the future.

“It’s about making future energy storage more reliable for everyone,” Zhao added.

The research was supported by the U.S. Department of Energy’s Battery 500 Consortium under the Vehicle Technologies Program. Other contributors were Min Feng from Brown; Chaoshan Wu, Liqun Guo, Zhaoyang Chen, Samprash Risal and Zheng Fan from UH; and Qing Ai and Jun Lou from Rice.

Trending News