the view from heti

ExxonMobil, Intel eye sustainable solutions within data center innovation

ExxonMobil and Intel are working to design, test, research and develop new liquid cooling technologies to optimize data center performance and help customers meet their sustainability goals. Photo via Getty Images

Two multinational corporations have announced a new collaboration to create energy-efficient and sustainable solutions for data centers as the market experiences significant growth.

ExxonMobil and Intel are working to design, test, research and develop new liquid cooling technologies to optimize data center performance and help customers meet their sustainability goals. Liquid cooling solutions serve as an alternative to traditional air-cooling methods in data centers.

“Our partnership with ExxonMobil to co-develop turnkey solutions for liquid cooling will enable significant energy and water savings for data center and network deployments,” said Jen Huffstetler, Chief Product Sustainability Officer, Intel.

According to consulting firm McKinsey, “a hyperscaler’s data center can use as much power as 80,000 households do,” and that demand is expected to keep surging. Power consumption by the U.S. data center market is forecasted “to reach 35 gigawatts (GW) by 2030, up from 17 GW in 2022,” according to a McKinsey analysis. Artificial intelligence and machine learning, and other advanced computing techniques are increasing computational workloads, and in return, increasing electricity demand. Therefore, companies are searching for solutions to support this growth.

ExxonMobil launched its full portfolio of data center immersion fluid products last year. The partnership with Intel will allow them to further advance their efforts in this market.

“By integrating ExxonMobil’s proven expertise in liquid cooling technologies with Intel’s long legacy of industry leadership in world-changing computing technologies, together we will further the industry’s adoption and acceptance as it transitions to liquid cooling technologies,” said Sarah Horne, Vice President, ExxonMobil.

Learn more about this collaboration here.

———

This article originally ran on the Greater Houston Partnership's Houston Energy Transition Initiative blog. HETI exists to support Houston's future as an energy leader. For more information about the Houston Energy Transition Initiative, EnergyCapitalHTX's presenting sponsor, visit htxenergytransition.org.

Trending News

A View From HETI

Rice University scientists' “recharge-to-recycle” reactor has major implications for the electric vehicle sector. Photo courtesy Jorge Vidal/Rice University.

Engineers at Rice University have developed a cleaner, innovative process to turn end-of-life lithium-ion battery waste into new lithium feedstock.

The findings, recently published in the journal Joule, demonstrate how the team’s new “recharge-to-recycle” reactor recharges the battery’s waste cathode materials to coax out lithium ions into water. The team was then able to form high-purity lithium hydroxide, which was clean enough to feed directly back into battery manufacturing.

The study has major implications for the electric vehicle sector, which significantly contributes to the waste stream from end-of-life battery packs. Additionally, lithium tends to be expensive to mine and refine, and current recycling methods are energy- and chemical-intensive.

“Directly producing high-purity lithium hydroxide shortens the path back into new batteries,” Haotian Wang, associate professor of chemical and biomolecular engineering, co-corresponding author of the study and co-founder of Solidec, said in a news release. “That means fewer processing steps, lower waste and a more resilient supply chain.”

Sibani Lisa Biswal, chair of Rice’s Department of Chemical and Biomolecular Engineering and the William M. McCardell Professor in Chemical Engineering, also served as co-corresponding author on the study.

“We asked a basic question: If charging a battery pulls lithium out of a cathode, why not use that same reaction to recycle?” Biswal added in the release. “By pairing that chemistry with a compact electrochemical reactor, we can separate lithium cleanly and produce the exact salt manufacturers want.”

The new process also showed scalability, according to Rice. The engineers scaled the device to 20 square centimeters, then ran a 1,000-hour stability test and processed 57 grams of industrial black mass supplied by industry partner Houston-based TotalEnergies. The results produced lithium hydroxide that was more than 99 percent pure. It also maintained an average lithium recovery rate of nearly 90 percent over the 1,000-hour test, showing its durability. The process also worked across multiple battery chemistries, including lithium iron phosphate, lithium manganese oxide and nickel-manganese-cobalt variants.

Looking ahead, the team plans to scale the process and consider ways it can sustain high efficiency for greater lithium hydroxide concentrations.

“We’ve made lithium extraction cleaner and simpler,” Biswal added in the release. “Now we see the next bottleneck clearly. Tackle concentration, and you unlock even better sustainability.

Trending News