ERCOT plans to build a “super highway” of new transmission lines to boost grid reliability. Photo via Getty Images

The Electric Reliability Council of Texas, which manages the electric grid for 90 percent of Texans, is undertaking a $9.4 billion project to improve the reliability and efficiency of statewide power distribution. The initiative comes as ERCOT copes with escalating demand for electricity from data centers and cryptocurrency-mining facilities.

The project, approved Dec. 9 by ERCOT’s board, will involve building a 1,109-mile “super highway” of new 765-kilovolt transmission lines. One kilovolt equals 1,000 volts of electricity.

According to the Hoodline Dallas news site, the $9.4 billion project represents the five- to six-year first phase of ERCOT’s Strategic Transmission Expansion Plan (STEP). Hoodline says the plan, whose price tag is nearly $33 billion, calls for 2,468 miles of new 765-kilovolt power lines.

STEP will enable ERCOT to “move power longer distances with fewer losses,” Hoodline reports.

Upgrading the ERCOT grid is a key priority amid continued population growth in Texas, along with the state’s explosion of new data centers and cryptocurrency-mining facilities.

ERCOT says about 11,000 megawatts of new power generation capacity have been added to the ERCOT grid since last winter.

But in a report released ahead of the December board meeting, ERCOT says it received 225 requests this year from large power users to connect to its grid — a 270 percent uptick in the number of megawatts being sought by mega-users since last December. Nearly three-fourths (73 percent) of the requests came from data centers.

Allan Schurr, chief commercial officer of Houston-based Enchanted Rock, a provider of products and services for microgrids and onsite power generation, tells Energy Capital that the quickly expanding data center industry is putting “unprecedented pressure” on ERCOT’s grid.

“While the state has added new generation and transmission capacity, lengthy interconnection timelines and grid-planning limitations mean that supply and transmission are not keeping pace with this rapid expansion,” Schurr says. “This impacts both reliability and affordability.”

For families in Texas, this could result in higher energy bills, he says. Meanwhile, critical facilities like hospitals and grocery stores face a heightened challenge of preventing power outages during extreme weather or at other times when the ERCOT grid is taxed.

“I expect this trend to continue as AI and high-density computing grow, driving higher peak demand and greater grid variability — made even more complex by more renewables, extreme weather and other large energy users, like manufacturers,” Schurr says.

According to the Pew Research Center, data centers accounted for 4 percent of U.S. electricity use in 2024, and power demand from data centers is expected to more than double by 2030. Data centers that support the AI boom make up much of the rising demand.

In September, RBN Energy reported more than 10 massive data-center campuses had been announced in Texas, with dozens more planned. The Lone Star State is already home to roughly 400 data centers.

“Texas easily ranks among the nation’s top states for existing data centers, with only Virginia edging it out in both data-center count and associated power demand,” says RBN Energy.

Data centers, EVs, and storms put the Texas grid to the test. Photo courtesy UH.

Houston expert asks: Is the Texas grid ready for the future?

Guets Column

Texas has spent the past five years racing to strengthen its electric grid after Winter Storm Uri exposed just how vulnerable it was. Billions have gone into new transmission lines, grid hardening, and a surge of renewables and batteries. Those moves have made a difference, we haven’t seen another systemwide blackout like Uri, but the question now isn’t what’s been done, it’s whether Texas can keep up with what’s coming.

Massive data centers, electric vehicles, and industrial projects are driving electricity demand to unprecedented levels. NERC recently boosted its 10-year load forecast for Texas by more than 60%. McKinsey projects that U.S. electricity demand will rise roughly 40% by 2030 and double by 2050, with data centers alone accounting for as much as 11-12% of total U.S. electricity demand by 2030, up from about 4% today. Texas, already the top destination for new data centers, will feel that surge at a greater scale.

While the challenges ahead are massive and there will undoubtedly be bumps in the road (some probably big), we have an engaged Texas legislature, capable regulatory bodies, active non-profits, pragmatic industry groups, and the best energy minds in the world working together to make a market-based system work. I am optimistic Texas will find a way.

Why Texas Faces a Unique Grid Challenge

About 90% of Texas is served by a single, independent grid operated by ERCOT, rather than being connected to the two large interstate grids that cover the rest of the country. This structure allows ERCOT to avoid federal oversight of its market design, although it still must comply with FERC reliability standards. The trade-off is limited access to power from neighboring states during emergencies, leaving Texas to rely almost entirely on in-state generation and reserves when extreme weather hits.

ERCOT’s market design is also different. It’s an “energy-only” market, meaning generators are paid for electricity sold, not for keeping capacity available. While that lowers prices in normal times, it also makes it harder to finance backup, dispatchable generation like natural gas and batteries needed when the wind isn’t blowing or the sun isn’t shining.

The Risks Mounting

In Texas, solar and wind power supply a significant percentage of electricity to the grid. As Julie Cohn, a nonresident scholar at the Baker Institute, explains, these inverter‑based resources “connect through power electronics, which means they don’t provide the same physical signals to the grid that traditional generators do.” The Odessa incidents, where solar farms tripped offline during minor grid disturbances, showed how fragile parts of this evolving grid can be. “Fortunately, it didn’t result in customer outages, and it was a clear signal that Texas has the opportunity to lead in solving this challenge.”

Extreme weather adds more pressure while the grid is trying to adapt to a surge in use. CES research manager Miaomiao Rimmer notes: “Hurricane frequencies haven't increased, but infrastructure and population in their paths have expanded dramatically. The same hurricane that hit 70 years ago would cause far more damage today because there’s simply more in harm’s way.”

Medlock: “Texas has made significant strides in the last 5 years, but there’s more work to be done.”

Ken Medlock, Senior Director of the Center for Energy Studies at Rice University’s Baker Institute, argues that Texas’s problem isn’t a lack of solutions; it’s how quickly those solutions are implemented. He stresses that during the January 2024 cold snap, natural gas kept the grid stable, proving that “any system configuration with sufficient, dispatchable generation capacity would have kept the lights on.” Yet ERCOT load has exceeded dispatchable capacity with growing frequency since 2018, raising the stakes for future reliability.

Ken notes: “ERCOT has a substantial portfolio of options, including investment in dispatchable generation, storage near industrial users, transmission expansion, and siting generation closer to load centers. But allowing structural risks to reliability that can be avoided at a reasonable cost is unacceptable. Appropriate market design and sufficient regulatory oversight are critical.” He emphasizes that reliability must be explicitly priced into ERCOT’s market so backup resources can be built and maintained profitably. These resources, whether natural gas, nuclear, or batteries, cannot remain afterthoughts if Texas wants a stable grid.

Building a More Reliable Grid

For Texas to keep pace with rising demand and withstand severe weather, it must act decisively on multiple fronts, strengthening its grid while building for long-term growth.

  • Coordinated Planning: Align regulators, utilities, and market players to plan decades ahead, not just for next summer.
  • Balancing Clean and Reliable Power: Match renewable growth with flexible, dispatchable generation that can deliver power on demand.
  • Fixing Local Weak Spots: Harden distribution networks, where most outages occur, rather than focusing only on large-scale generation.
  • Market Reform and Technology Investment: Price reliability fairly and support R&D to make renewables strengthen, not destabilize, the grid.

In Conclusion

While Texas has undeniably improved its grid since Winter Storm Uri, surging electricity demand and intensifying weather mean the work is far from over. Unlike other states, ERCOT can’t rely on its neighbors for backup power, and its market structure makes new dispatchable resources harder to build. Decisive leadership, investment, and reforms will be needed to ensure Texas can keep the lights on.

It probably won’t be a smooth journey, but my sense is that Texas will solve these problems and do something spectacular. It will deliver more power with fewer emissions, faster than skeptics believe, and surprise us all.

-----------

Scott Nyquist is a senior advisor at McKinsey & Company and vice chairman, Houston Energy Transition Initiative of the Greater Houston Partnership. The views expressed herein are Nyquist's own and not those of McKinsey & Company or of the Greater Houston Partnership. This article originally appeared on LinkedIn.

Texas must confront the growing gap between renewable potential and real-time reliability. Photo via Getty Images

Expert on powering Texas: The promise and challenges of renewable energy

Guest Column

Texas leads the nation in wind and solar energy, but that leadership is being tested as a surge in project cancellations raises new concerns about the future of renewables in the state.

While Texas clean energy has grown significantly in recent years, solar and wind often fall short of meeting peak electricity demand. As extreme weather, rising demand, and project cancellations strain the grid, Texas must confront the growing gap between renewable potential and real-time reliability.

Solar and Wind Energy

Solar generation in the Lone Star State has grown substantially over the past decade. The Texas solar industry is estimated to employ over 12,000 Texans and is contributing billions in local tax revenue and landowner income, and solar and storage are the largest sources of new energy on the Texas grid.

With a significant number of sunny days, Texas’ geography also enables it to be among the states with the greatest energy potential for solar power generation. Further moving to advance the use of solar energy generation, the 89th Texas legislature passed SB 1202 which accelerates the permitting process for home solar and energy storage installations. SB 1202 empowers homeowners to strengthen their own energy security and supports greater grid resilience across the state.

Texas has also led the United States in wind energy production for more than 17 years, with 239 wind-related projects and over 15,300 wind turbines, which is more than any other state. The economic impact of wind energy in Texas is substantial, with the industry contributing $1.7 billion a year to the state’s gross domestic product. With wind electric power generation jobs offering an average annual wage of $109,826, the growing sector provides lucrative employment opportunities.

However, solar and wind currently struggle to meet Texas’ peak electricity demand from 5 pm to 7 pm — a time when millions of residents return home, temperatures remain high and air conditioner use surges. Solar generation begins to decline just as demand ramps up, and wind production is often inconsistent during these hours. Without sufficient long-duration storage or dispatchable backup power, this mismatch between supply and demand presents a significant reliability risk — one that becomes especially urgent during heat waves and extreme weather events, as seen during ERCOT conservation alerts.

Geothermal Energy

Geothermal energy uses heat from beneath the Earth’s surface to provide reliable, low-emission power with minimal land use and no fuel transport. Though it currently supplies a small share of energy, Texas is emerging as a leader in its development, supported by state leaders, industry, and environmentalists. During the 89th legislative session, Texas passed HB 3240 to create a Geothermal Energy Production Policy Council, set to begin work on September 1, 2025.

In 2024, Sage Geosystems was selected to develop geothermal projects at the Naval Air Station in Corpus Christi, expanding its work with the Department of Defense. In partnership with the Environmental Security Technology Certification Program, Sage is using its proprietary Geopressured Geothermal Systems technology to evaluate the potential for geothermal to be a source of clean and consistent energy at the base.

One limitation of geothermal energy is location. Deep drilling is costly, and areas with high water tables, like some coastal regions, may not be viable.

Hydroelectric Energy

While hydropower plays a minor role in Texas’ energy mix, it is still an essential energy source. Its output depends on water availability, which can be affected by seasonal and long-term changes like droughts.

Texas has 26 hydropower plants with a total capacity of nearly 738 megawatts, serving about 2.9 million people as of 2019. Harris County holds 43% of all hydropower generation jobs in the state, and in 2021, hydroelectric power generation contributed $700 million to Texas’ gross domestic product.

Federal funding is helping expand hydropower in Texas. The Southwestern Power Administration has committed about $103 million to support infrastructure, including $32 million for upgrades to Central Texas’s Whitney Dam. The 2021 Inflation Reduction Act added $369 billion in tax credits for clean energy, supporting dam retrofits nationwide. In 2022, the Department of Energy launched over $28 million in new funding through the Infrastructure Law to help meet national clean energy goals by 2035 and carbon neutrality by 2050.

Tidal Energy

Driven by the moon and sun, tidal energy is predictable but limited to coastal areas with strong tides. Although Texas has modest tidal potential, research is ongoing to optimize it. Texas A&M University is developing a floating test platform for hybrid renewable systems, integrating tidal, wave, wind, and solar energy. In addition, St. Mary’s University in San Antonio is prototyping small-scale tidal turbines using 3D printing technology.

While commercial tidal power remains in the research phase, the state’s offshore capabilities, engineering talent, and growing university-led innovation could make it a player in hybrid marine renewable systems. Floating platforms that integrate wave, tide, solar, and wind offer a compelling vision for offshore power generation suited to Texas’ unique coastal conditions.

Biomass Energy

Biomass energy is the largest renewable source worldwide, providing 55% of renewables and over 6% of global energy. While reliable, it can be less efficient, sometimes using more energy to burn the organic matter than it produces, and demand may exceed supply.

In Texas, biomass is a nominal part of the state’s energy portfolio. However, substantial research is being conducted by Texas A&M University to attempt to convert algae and food waste into a cost-efficient source of biomass material. In addition, UK-based biomass and renewable energy company Drax opened its North American headquarters in Houston, which created more than 100 new jobs in Texas’ renewable energy industry.

It’s clear that renewable energy is playing an increasingly important role in shaping Texas’ energy future. But the road ahead demands a realistic view: while these sources can reduce emissions and diversify our generation mix, they do not yet solve for peak load reliability — especially during the critical 5 pm to 7 pm window when grid stress is highest.

Meeting that challenge will require not just investment in renewables, but also innovation in grid-scale storage, flexible generation, market reform and consumer programs. A diversified, resilient energy portfolio — one that includes renewables and reliable dispatchable sources — will be the key to ensuring that Texas remains powered, prepared and prosperous for generations to come.

---

Sam Luna is director at BKV Energy, where he oversees brand and go-to-market strategy, customer experience, marketing execution, and more.

Texas' energy demand will nearly double by 2030, says ERCOT. Photo via Getty Images

Guest column: How growing energy demand will impact the Texas grid

Guest Column

Although Texas increased its power supply by 35% over the last four years, a recent report from ERCOT predicts that Texas’ energy demand will nearly double by 2030, with power supply projected to fall short of peak demand in a worst-case scenario beginning in summer 2026. There are many factors and variables that could either increase or decrease the grid’s stability.

Homebuilding in Texas

One of the most easily identifiable challenges is that the population of Texas is continuing to grow, which places greater demand on the state’s power grid. With its booming population, the state is now the second most populous in the country.

In 2024, Texas led the nation in homebuilding, issuing 15% of the country's new-home permits in 2024. Within the first two months of 2025, Houston alone saw more than 11,000 new building permits issued. The fact that Houston is the only major metro in the United States to lack zoning laws means it does not directly regulate density or separate communities by use type, which is advantageous for developers and homebuilders, who have far fewer restrictions to navigate when constructing new homes.

Large-scale computing facilities

Another main source of the growing demand for power is large-scale computing facilities such as data centers and cryptocurrency mining operations. These facilities consume large amounts of electricity to run and keep their computing equipment cool.

In 2022, in an effort to ensure grid reliability, ERCOT created a program to approve and monitor these large load (LFL) customers. The Large Flexible Load Task Force is a non-voting body that develops policy recommendations related to planning, markets, operations, and large load interconnection processes. LFL customers are those with an expected peak demand capacity of 75 megawatts or greater.

It is anticipated that electricity demand from customers identified by ERCOT as LFL will total 54 billion kilowatt-hours (kWh) in 2025, which is up almost 60% from the expected demand in 2024. If this comes to fruition, the demand from LFL customers would represent about 10% of the total forecast electricity consumption on the ERCOT grid this year. To accommodate the expected increase in power demand from large computing facilities, the state created the Texas Energy Fund, which provides grants and loans to finance the construction, maintenance, modernization, and operation of electric facilities in Texas. During this year’s 89th legislative session, lawmakers approved a major expansion of the Texas Energy Fund, allocating $5 billion more to help build new power plants and fund grid resilience projects.

Is solar power the key to stabilizing the grid?

The fastest-growing source of new electric generating capacity in the United States is solar power, and Texas stands as the second-highest producer of solar energy in the country.

On a regular day, solar power typically constitutes about 5% of the grid’s total energy output. However, during intense heat waves, when the demand for electricity spikes and solar conditions are optimal, the share of solar power can significantly increase. In such scenarios, solar energy’s contribution to the Texas grid can rise to as much as 20%, highlighting its potential to meet higher energy demands, especially during critical times of need.

While the benefits of solar power are numerous, such as reducing greenhouse gas emissions, lowering electricity bills, and promoting energy independence from the grid, it is important to acknowledge its barriers, such as:

  • Sunlight is intermittent and variable. Cloudy days, nighttime, and seasonal changes can affect energy production, requiring backup or storage solutions. Extreme weather conditions, such as hailstorms, can damage solar panels, affecting their performance and lifespan.
  • The upfront costs of purchasing and installing solar panels and associated equipment can be relatively high.
  • Large-scale solar installations may require significant land area, potentially leading to concerns about land use, habitat disruption, and conflicts with agricultural activities.
  • Integrating solar power into existing electricity grids can pose challenges due to its intermittent nature. Upgrading and modifying grids to handle distributed generation can be costly.

Although Texas has made progress in expanding its power supply, the rapid pace of population growth, homebuilding, and large-scale computing facilities presents challenges for grid stability. The gap between energy supply and demand needs to continue to be addressed with proactive planning. While solar power is a promising solution, there are realistic limitations to consider. A diversified approach that includes both renewable and traditional energy sources, along with ongoing legislative movement, is critical to ensuring a resilient energy future for Texas.

---

Sam Luna is director at BKV Energy, where he oversees brand and go-to-market strategy, customer experience, marketing execution, and more.

A major heat alert is in place for Texas. Photo via Getty Images

Is the Texas power grid prepared for summer 2025 heat?

Guest Column

Although the first official day of summer is not until June 20, Houstonians are already feeling the heat with record-breaking, triple-digit temperatures. The recent heatwave has many Texans wondering if the state’s grid will have enough power to meet peak demand during the summer.

How the Texas grid fared in summer 2024

To predict what could happen as we enter summer this year, it is essential to assess the state of the grid during summer 2024, and what, if anything, has been improved.

According to research from the Federal Reserve Bank of Dallas, solar electricity generation and utility-scale batteries within the ERCOT power grid set records in summer 2024. On average, solar contributed nearly 25 percent of total power needs during mid-day hours between June 1 and August 31. In critical evening hours, when load (demand for electricity) remains elevated but solar output declines, discharge from batteries successfully filled the gap.

Texas added more battery storage capacity than any other state last year, and, excluding California, now has more battery capacity than the rest of the country combined. The state also added 3,410 megawatts of natural gas-fueled power last year. While we did experience major power losses as a result of extreme weather, such as the derecho in May and Hurricane Beryl in July, ERCOT did not have to issue a single conservation appeal last summer to ward off capacity-related outages--and it was the sixth-hottest summer on record.

Policymakers are also taking steps to pass legislation that will help stabilize the grid. During this year’s 89th legislative session, Senate Bill 6 (TX SB6) was introduced, which seeks to:

  • Improve ERCOT's load forecasting transparency
  • Enhance outage protections for residential consumers
  • Adjust transmission cost allocations
  • Bolster grid reliability

In essence, the bill is meant to balance business growth with grid reliability, ensuring that the state continues to be an attractive destination for industrial expansion while preventing reliability risks due to rapid demand increases.

Is the Texas grid prepared for summer 2025?

The good news is that the grid is predicted to be able to manage the energy demand this summer, but there is no guarantee that power disruptions will not happen.

The National Oceanic and Atmospheric Administration has indicated that summer 2025 will likely be warmer and drier than average across most of Texas. Based on ERCOT data and weather projections, West Texas and the Dallas-Fort Worth and Houston metropolitan areas face the highest risk of outages.

While Texas is No. 1 in wind power and No. 2 in solar power, only behind California, there are valid concerns about heavy reliance on renewables when the wind isn’t blowing or the sun isn’t shining, compounded by a lack of large-scale battery storage. Then, there’s the underlying cost and ecological footprint associated with the manufacturing of those batteries. Although solar and wind capacity continues to expand rapidly, integration challenges remain during peak demand periods, especially during the late afternoon when solar generation declines but air conditioning usage remains high.

Additional factors that contribute to the grid’s instability are that Texas faces a massive surge in demand for electricity due to an increase in large users like crypto mining facilities and data centers, as well as population growth. ERCOT predicts that Texas’ energy demand will nearly double by 2030, with power supply projected to fall short of peak demand in a worst-case scenario beginning in summer 2026.

Thanks to investments in solar power, battery storage, and traditional energy sources, ERCOT has made progress in improving grid reliability which indicates that, at least for this summer, energy load will be manageable. A combination of legislative action, strategic planning and technological innovation will need to continue to ensure that this momentum remains on a positive trajectory.

---

Sam Luna is director at BKV Energy, where he oversees brand and go-to-market strategy, customer experience, marketing execution, and more.

Time is of the essence in getting power plants online. Getty Images

Big Tech's soaring energy demands making coal-fired power plant sites attractive

Transforming Coal Power

Coal-fired power plants, long an increasingly money-losing proposition in the U.S., are becoming more valuable now that the suddenly strong demand for electricity to run Big Tech's cloud computing and artificial intelligence applications has set off a full-on sprint to find new energy sources.

President Donald Trump — who has pushed for U.S. “energy dominance” in the global market and suggested that coal can help meet surging power demand — is wielding his emergency authority to entice utilities to keep older coal-fired plants online and producing electricity.

While some utilities were already delaying the retirement of coal-fired plants, the scores of coal-fired plants that have been shut down the past couple years — or will be shut down in the next couple years — are the object of growing interest from tech companies, venture capitalists, states and others competing for electricity.

That’s because they have a very attractive quality: high-voltage lines connecting to the electricity grid that they aren’t using anymore and that a new power plant could use.

That ready-to-go connection could enable a new generation of power plants — gas, nuclear, wind, solar or even battery storage — to help meet the demand for new power sources more quickly.

For years, the bureaucratic nightmare around building new high-voltage power lines has ensnared efforts to get permits for such interconnections for new power plants, said John Jacobs, an energy policy analyst for the Washington, D.C.-based Bipartisan Policy Center.

“They are very interested in the potential here. Everyone sort of sees the writing on the wall for the need for transmission infrastructure, the need for clean firm power, the difficulty with siting projects and the value of reusing brownfield sites,” Jacobs said.

Rising power demand, dying coal plants

Coincidentally, the pace of retirements of the nation's aging coal-fired plants had been projected to accelerate at a time when electricity demand is rising for the first time in decades.

The Department of Energy, in a December report, said its strategy for meeting that demand includes re-using coal plants, which have been unable to compete with a flood of cheap natural gas while being burdened with tougher pollution regulations aimed at its comparatively heavy emissions of planet-warming greenhouse gases.

There are federal incentives, as well — such as tax credits and loan guarantees — that encourage the redevelopment of retired coal-fired plants into new energy sources.

Todd Snitchler, president and CEO of the Electric Power Supply Association, which represents independent power plant owners, said he expected Trump's executive orders will mean some coal-fired plants run longer than they would have — but that they are still destined for retirement.

Surging demand means power plants are needed, fast

Time is of the essence in getting power plants online.

Data center developers are reporting a yearlong wait in some areas to connect to the regional electricity grid. Rights-of-way approvals to build power lines can also be difficult to secure, given objections by neighbors who may not want to live near them.

Stephen DeFrank, chairman of the Pennsylvania Public Utility Commission, said he believes rising energy demand has made retiring coal-fired plants far more valuable.

That's especially true now that the operator of the congested mid-Atlantic power grid has re-configured its plans to favor sites like retired coal-fired plants as a shortcut to meet demand, DeFrank said.

“That’s going to make these properties more valuable because now, as long as I’m shovel ready, these power plants have that connection already established, I can go in and convert it to whatever," DeFrank said.

Gas, solar and more at coal power sites

In Pennsylvania, the vast majority of conversions is likely to be natural gas because Pennsylvania sits atop the prolific Marcellus Shale reservoir, DeFrank said.

In states across the South, utilities are replacing retiring or retired coal units with gas. That includes a plant owned by the Tennessee Valley Authority; a Duke Energy project in North Carolina; and a Georgia Power plant.

The high-voltage lines at retired coal plants on the Atlantic Coast in New Jersey and Massachusetts were used to connect offshore wind turbines to electricity grids.

In Alabama, the site of a coal-fired plant, Plant Gorgas, shuttered in 2019, will become home to Alabama Power’s first utility-scale battery energy storage plant.

Texas-based Vistra, meanwhile, is in the process of installing solar panels and energy storage plants at a fleet of retired and still-operating coal-fired plants it owns in Illinois, thanks in part to state subsidies approved there in 2021.

Nuclear might be coming

Nuclear is also getting a hard look.

In Arizona, lawmakers are advancing legislation to make it easier for three utilities there — Arizona Public Service, Salt River Project and Tucson Electric Power — to put advanced nuclear reactors on the sites of retiring coal-fired plants.

At the behest of Indiana's governor, Purdue University studied how the state could attract a new nuclear power industry. In its November report, it estimated that reusing a coal-fired plant site for a new nuclear power plant could reduce project costs by between 7% and 26%.

The Bipartisan Policy Center, in a 2023 study before electricity demand began spiking, estimated that nuclear plants could cut costs from 15% to 35% by building at a retiring coal plant site, compared to building at a new site.

Even building next to the coal plant could cut costs by 10% by utilizing transmission assets, roads and buildings while avoiding some permitting hurdles, the center said.

That interconnection was a major driver for Terrapower when it chose to start construction in Wyoming on a next-generation nuclear power plant next to PacifiCorp’s coal-fired Naughton Power Plant.

Jobs, towns left behind by coal

Kathryn Huff, a former U.S. assistant secretary for nuclear energy who is now an associate professor at the University of Illinois Urbana-Champaign, said the department analyzed how many sites might be suitable to advanced nuclear reactor plants.

A compelling factor is the workers from coal plants who can be trained for work at a nuclear plant, Huff said. Those include electricians, welders and steam turbine maintenance technicians.

In Homer City, the dread of losing its coal-fired plant — it shut down in 2023 after operating for 54 years — existed for years in the hills of western Pennsylvania’s coal country.

“It’s been a rough 20 years here for our area, maybe even longer than that, with the closing of the mines, and this was the final nail, with the closing of the power plant,” said Rob Nymick, Homer City's manager. “It was like, ‘Oh my god, what do we do?’”

That is changing.

The plant's owners in recent weeks demolished the smoke stacks and cooling towers at the Homer City Generating State and announced a $10 billion plan for a natural gas-powered data center campus.

It would be the nation’s third-largest power generator and that has sown some optimism locally.

“Maybe we will get some families moving in, it would help the school district with their enrollment, it would help us with our population,” Nymick said. “We’re a dying town and hopefully maybe we can get a restaurant or two to open up and start thriving again. We’re hoping.”

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

Houston-based NRG announces new CEO and succession plan

new leader

Houston-based NRG Energy Inc. announced Jan. 7 that it has appointed Robert J. Gaudette as president and CEO. Gaudette took over as president effective Jan. 7 and will assume the role of CEO April 30, coinciding with the company's next stockholder meeting.

Gaudette, who previously served as executive vice president and president of NRG Business and Wholesale Operations, will succeed Lawrence Coben in the leadership roles. Coben will remain an advisor to NRG through the end of the year and will also continue to serve as board chair until April 30. Antonio Carrillo, lead independent director at NRG, will take over as board chair.

"Rob has played a central role in strengthening NRG’s position as a leader in our industry through strategic growth, operational excellence, and customer-focused innovation," Coben said in the news release. "He is a strong, decisive leader with extensive knowledge of our business, markets, and customers. The Board and I are confident that Rob is the right person to lead NRG forward and take the NRG rocket ship to new heights. I can’t wait to see what comes next.”

Gaudette has been with NRG since 2001. He has served as EVP of NRG Business and Market Operations since 2022 and president of NRG Business and Market Operations since 2024. In these roles, he led NRG’s power generation and oversaw its portfolio of commercial and industrial products and services as well as its market operations, according to the company.

He has held various executive leadership roles at NRG. He earned his bachelor's degree in chemistry from The College of William and Mary and an MBA at Rice University, where he was a Jones Scholar. He also served four years as an Army officer.

“It is an honor to be appointed NRG’s next CEO at this transformative time for the energy sector and our company,” Gaudette said in the release. “With NRG’s electricity, natural gas and smart home portfolio, we are ideally positioned to meet America’s evolving energy needs. I am grateful to Larry and all my NRG colleagues, both past and present, who built our great company and positioned us for the future. I look forward to leading our incredible team to deliver affordable, resilient power for the customers and communities we serve, while creating substantial value for our shareholders.”

In addition to its traditional power generation and electricity businesses, NRG has been working to develop a 1-gigawatt virtual power plant by connecting thousands of decentralized energy sources by 2035 in an effort to meet Texas’ surging energy demands.

The company announced partnerships last year with two California-based companies to bolster home battery use and grow its network. NRG has said the VPP could provide energy to 200,000 homes during peak demand.

10+ must-attend Houston energy events happening in Q1 2026

Mark Your Calendar

Editor's note: With the new year comes a new slate of must-attend events for those in the Houston energy sector. We've rounded up a host of events to put on your calendar for Q1, including some that you can attend this month. Plus, other premier annual events will return in February and March 2026 and are currently offering early-bird, discounted registration. Book now.

Jan. 7-8 — AAPG Subsurface Energy to Power Workshop

This two-day AAPG workshop explores the expanding role of natural gas, geothermal, hydrogen, lithium, and uranium in accelerating electricity capacity. Participants will examine innovative solutions designed to reduce reliance on long-distance transmission lines, pipelines, and other costly infrastructure. Throughout the workshop, attendees will gain insight into both the technical deployment of subsurface resources and the land, legal, and permitting factors that influence project development.

This event begins Jan. 7 at Norris Conference Center at CityCentre. Register here.

Jan. 19-22 — PPIM 2026

The 38th international Pipeline Pigging & Integrity Management Conference and Exhibition takes place over four days at the George R. Brown Convention Center and the Hilton Americas. This industry forum is devoted exclusively to pigging for pipeline maintenance and inspection, engineering assessment, repair, risk management, and NDE. Two days of courses will take place Jan. 19-20, followed by the conference on Jan. 21-22, and the exhibition running Jan. 20-22. Register here.

Jan. 22 — MicroSeismic - Romancing Energy Forum

This forum will feature raw, unfiltered stories from the pioneers who changed the trajectory of American Shale. Attendees will gain insights into the playbooks, decisions, data, and lessons learned behind the biggest discoveries and engineering triumphs in modern energy. Keynote speakers include Tom and Diane Gates of Gates Ranch.

This event begins at 8 am on Jan. 22 at Norris Conference Center at CityCentre. Register here.

Jan. 22 — Houston Downton Luncheon: Beyond the Barrel: Pricing, Transition, and Geopolitics in 2026

Women's Energy Network Houston Chapter hosts this January lunch and learn featuring guest speaker Ha Nguyen with S&P Global Energy. Nguyen will discuss the global energy outlook for 2026, with a focus on strategic drivers, such as decarbonization and EV adoption, and a look at Houston's crucial role in the future of the U.S. market.

This event begins at 11:30 am on Jan. 22 at The Houston Club. Register here.

Feb. 18-20 — NAPE Summit Week 2026

NAPE is the energy industry’s marketplace for the buying, selling, and trading of prospects and producing properties. NAPE brings together all industry disciplines and companies of all sizes, and in 2026 it will introduce three new hubs — offshore, data centers, and critical minerals — for more insights, access, and networking opportunities. The event includes a summit, exhibition, and more.

This event begins Feb. 18 at George R. Brown Convention Center. Register here.

Feb. 24-26 — 2026 Energy HPC & AI Conference

The 2026 Energy HPC & AI Conference marks the 19th year for the Ken Kennedy Institute to convene experts from the energy industry, academia, and national labs to share breakthroughs for HPC and AI technologies. The conference returns to Houston with engaging speaker sessions, a technical talk program, networking receptions, add-on workshops, and more.

This event begins Feb. 24 at Rice University's BRC. Register here.

Feb. 26 — February Transition on Tap

Mix and mingle at Greentown Labs' first Transition on Tap event of the year. Meet the accelerator's newest startup members, who are working on innovations ranging from methane capture to emissions-free manufacturing processes to carbon management.

This event begins at 5:30 pm on Feb. 26 at Greentown Labs Houston. Register here.

March 2-4 — The Future Energy Summit

The Future Energy Summit is a premier global event bringing together visionaries, industry leaders, and energy experts to shape the future of energy. The second edition of the conference will provide a platform for groundbreaking discussions, cutting-edge technologies, and transformative strategies that will accelerate the energy transition.

This event begins March 2. Register here.

March 10-12 — World Hydrogen & Carbon Americas

S&P Global Energy brings together two leading events — Carbon Management Americas and World Hydrogen North America — to form a new must-attend event for those in the hydrogen and carbon industries. More than 800 senior leaders from across the energy value chain will attend this event featuring immersive roundtable discussions, hands-on training, real-world case studies, and unparalleled networking opportunities.

This event begins March 10 at Marriott Marquis Houston. Register here.

March 23-27 — CERAWeek 2026

CERAWeek 2026 will focus on "Convergence and Competition: Energy, Technology and Geopolitics." The industry's foremost thought leaders will convene in Houston to cultivate relationships and exchange transformative ideas during the annual event. Through the lens of 16 dynamic themes, CERAWeek 2026 will explore breakthroughs, cross-industry connections, and powerful partnerships that are accelerating the transformation of the global energy system.

This event begins March 23. Register here.

Japanese company launches solar module manufacturing at Houston-area plant

solar plant

A local subsidiary of a Japanese solar equipment manufacturer recently began producing solar modules at a new plant in Humble.

TOYO Co. Ltd.’s TOYO Solar LLC subsidiary can produce 1 gigawatt worth of solar modules per year at a 567,140-square-foot plant it leases in Lovett Industrial’s Nexus North Logistics Park on Greens Road. TOYO Solar’s next phase will accommodate 2.5 gigawatts’ worth of solar module manufacturing. The subsidiary eventually plans to expand manufacturing capacity to 6.5 gigawatts.

For now, TOYO Solar operates only one assembly line at the Humble plant. Once TOYO Solar has five assembly lines up and running, it could employ as many as 750 manufacturing workers there, according to Connect CRE.

TOYO says the plant enlarges its U.S. footprint “to be closer to the majority of its clients, meet the demand for American-made solar panels, and contribute to the growing demand for secure, sustainable energy solutions as demands on the grid continue to rise.”

Last month, TOYO purchased the remaining 24.99 percent stake in TOYO Solar to make it a wholly owned subsidiary. TOYO entered the Houston-area market through its 2024 acquisition of a majority stake in Solar Plus Technology Texas LLC.