fresh funding

Houston renewables developer lands $85M for nationwide solar projects

Catalyze has secured an $85 million tax equity investment to support the construction and completion of 75 megawatts of solar projects nationwide in 2025. Photo courtesy of Catalyze

Houston-based Catalyze, a developer of independent power systems, announced it has secured an $85 million tax equity investment from RBC Community Investments.

“RBC’s investment in this portfolio demonstrates our commitment to advancing clean energy solutions within local communities,” Jonathan Cheng, managing director at RBC, said in a news release. “We are excited to partner with Catalyze on the strategic deployment of these and future projects.”

The financing will go toward the construction and completion of 75 megawatts of commercial and industrial solar projects nationwide in 2025. Catalyze’s current generation portfolio now totals 300 megawatts of projects in operations and construction.

The transaction will help Catalyze’s existing relationship with RBC, which demonstrates a commitment to advancing renewable energy solutions at scale.

“RBC is a valued financing partner, and we are pleased to further expand our relationship with this latest investment,” Jared Haines, CEO of Catalyze, said in a news release. “This financing enables us to further our mission to bring scalable distributed generation projects to businesses and communities nationwide.”

Catalyze also has other private equity sponsors in EnCap Investments and Actis.

Last May, Catalyze announced that it secured $100 million in financing from NY Green Bank to support a 79-megawatt portfolio of community distributed generation solar projects across New York state.

Trending News

A View From HETI

Ahmad Elgazzar, Haotian Wang and Shaoyun Hao were members of a Rice University team that recently published findings on how acid bubbling can improve CO2 reduction systems. Photo courtesy Rice.

In a new study published in the journal Science, a team of Rice University researchers shared findings on how acid bubbles can improve the stability of electrochemical devices that convert carbon dioxide into useful fuels and chemicals.

The team led by Rice associate professor Hoatian Wang addressed an issue in the performance and stability of CO2 reduction systems. The gas flow channels in the systems often clog due to salt buildup, reducing efficiency and causing the devices to fail prematurely after about 80 hours of operation.

“Salt precipitation blocks CO2 transport and floods the gas diffusion electrode, which leads to performance failure,” Wang said in a news release. “This typically happens within a few hundred hours, which is far from commercial viability.”

By using an acid-humidified CO2 technique, the team was able to extend the operational life of a CO2 reduction system more than 50-fold, demonstrating more than 4,500 hours of stable operation in a scaled-up reactor.

The Rice team made a simple swap with a significant impact. Instead of using water to humidify the CO2 gas input into the reactor, the team bubbled the gas through an acid solution such as hydrochloric, formic or acetic acid. This process made more soluble salt formations that did not crystallize or block the channels.

The process has major implications for an emerging green technology known as electrochemical CO2 reduction, or CO2RR, that transforms climate-warming CO2 into products like carbon monoxide, ethylene, or alcohols. The products can be further refined into fuels or feedstocks.

“Using the traditional method of water-humidified CO2 could lead to salt formation in the cathode gas flow channels,” Shaoyun Hao, postdoctoral research associate in chemical and biomolecular engineering at Rice and co-first author, explained in the news release. “We hypothesized — and confirmed — that acid vapor could dissolve the salt and convert the low solubility KHCO3 into salt with higher solubility, thus shifting the solubility balance just enough to avoid clogging without affecting catalyst performance.”

The Rice team believes the work can lead to more scalable CO2 electrolyzers, which is vital if the technology is to be deployed at industrial scales as part of carbon capture and utilization strategies. Since the approach itself is relatively simple, it could lead to a more cost-effective and efficient solution. It also worked well with multiple catalyst types, including zinc oxide, copper oxide and bismuth oxide, which are allo used to target different CO2RR products.

“Our method addresses a long-standing obstacle with a low-cost, easily implementable solution,” Ahmad Elgazzar, co-first author and graduate student in chemical and biomolecular engineering at Rice, added in the release. “It’s a step toward making carbon utilization technologies more commercially viable and more sustainable.”

A team led by Wang and in collaboration with researchers from the University of Houston also shared findings on salt precipitation buildup and CO2RR in a recent edition of the journal Nature Energy. Read more here.

Trending News