Taking Off

Houston hypersonic engine co. completes first successful test flight

Venus Aerospace has reached a major milestone. Courtesy photo

Houston-based Venus Aerospace successfully completed the first U.S. flight test of its proprietary engine at a demonstration at Spaceport America in New Mexico.

Venus’ next-generation rotating detonation rocket engine (RDRE) is supported by a $155,908 federal Small Business Innovation Research (SBIR) grant from NASA and aims to enable vehicles to travel four to six times the speed of sound from a conventional runway. The recent flight test was the first of an American-developed engine of its kind.

"With this flight test, Venus Aerospace is transforming a decades-old engineering challenge into an operational reality,” Thomas d'Halluin, managing partner at Airbus Ventures, an investor in Venus, said in a news release. “Getting a rotating detonation engine integrated, launch-ready, and validated under real conditions is no small feat. Venus has shown an extraordinary ability to translate deep technical insight into hardware progress, and we're proud to support their bold approach in their attempt to unlock the hypersonic economy and forge the future of propulsion."

Venus’ RDRE operates through supersonic shockwaves, called detonations, that generate more power with less fuel. It is designed to be affordable and scalable for defense and commercial systems.

The RDRE is also engineered to work with the company's air-breathing detonation ramjet, the VDR2, which helps enable aircraft to take off from a runway and transition to speeds exceeding Mach 6. Venus plans for full-scale propulsion testing and vehicle integration of this system. Venus’ ultimate goal is to develop a Mach 4 reusable passenger aircraft, known as the Stargazer M4.

"This milestone proves our engine works outside the lab, under real flight conditions," Andrew Duggleby, Venus co-founder and chief technology officer, said in the release. "Rotating detonation has been a long-sought gain in performance. Venus' RDRE solved the last but critical steps to harness the theoretical benefits of pressure gain combustion. We've built an engine that not only runs, but runs reliably and efficiently—and that's what makes it scalable. This is the foundation we need that, combined with a ramjet, completes the system from take-off to sustained hypersonic flight."

The hypersonic market is projected to surpass $12 billion by 2030, according to Venus.

"This is the moment we've been working toward for five years," Sassie Duggleby, CEO and co-founder of Venus Aerospace, added. "We've proven that this technology works—not just in simulations or the lab, but in the air. With this milestone, we're one step closer to making high-speed flight accessible, affordable, and sustainable."

---

This article originally appeared on InnovationMap.com.

Trending News

 

A View From HETI

Syzygy Plasmonics has partnered with Volycys on its NovaSAF 1 project, which will convert biogas into sustainable aviation fuel in Uruguay. Photo courtesy of Syzygy

Houston-based Syzygy Plasmonics has announced a partnership with Velocys, another Houston company, on its first-of-its-kind sustainable aviation fuel (SAF) production project in Uruguay.

Velocys was selected to provide Fischer-Tropsch technology for the project. Fischer-Tropsch technology converts synthesis gas into liquid hydrocarbons, which is key for producing synthetic fuels like SAF.

Syzygy estimates that the project, known as NovaSAF 1, will produce over 350,000 gallons of SAF annually. It is backed by Uruguay’s largest dairy and agri-energy operations, Estancias del Lago, with permitting and equipment sourcing ongoing. Syzygy hopes to start operations by 2027.

"This project proves that profitable SAF production doesn't have to wait on future infrastructure," Trevor Best, CEO of Syzygy Plasmonics, said in a news release. "With Velocys, we're bringing in a complete, modular solution that drives down overall production costs and is ready to scale. Uruguay is only the start."

The NovaSAF 1 facility will convert dairy waste and biogas into drop-in jet fuel using renewable electricity and waste gas via its light-driven GHG e-Reforming technology. The facility is expected to produce SAF with at least an 80 percent reduction in carbon intensity compared to Jet A fuel.

Syzygy will use Velocys’ microFTL technology to convert syngas into high-yield jet fuel. Velocys’ microFTL will help maximize fuel output, which will assist in driving down the cost required to produce synthetic fuel.

"We're proud to bring our FT technology into a project that's changing the game," Matthew Viergutz, CEO of Velocys, added in the release. "This is what innovation looks like—fast, flexible, and focused on making SAF production affordable."

Trending News