top stories

Greentown scores federal funding, Houston startups win big, and more trending energy transition news

Three Houston energy tech startups win awards at local innovation event — and more top stories from the week. Photo by Emily Jaschke/InnovationMap

Editor's note: It's been a busy news week for energy transition in Houston, and some of this week's headlines resonated with EnergyCapital readers on social media and daily newsletter. Trending news included wins for Houston energy tech startups, federal funding for Greentown Houston, and more.

Canadian company secures Houston funding, relocates HQ

Ambyint has fresh funding and a new main office. Photo via Getty Images

An AI-powered energy tech company has raised additional funding and relocated it's main office to Canada.

Ambyint, a Canadian-founded company that's had a Houston presence for a few years, has announced its latest round of funding and new headquarters. The software company provides energy customers with its AI-powered production and artificial lift optimization platform.

The funding comes from existing investors, Houston-based Mercury and Montrose Lane, plus two new investors, BDC Capital and Accelerate Fund III. The undisclosed amount of funding will go toward customer growth, hiring, and new enhancements to the technology, including expanding emissions mitigation capabilities.

"We have the wind in our sails and are extremely proud to see this transaction close,” Benjamin Kemp, CEO of Ambyint, says in a news release. “This investment allows us to double down on the energy market and further our AI-enabled optimization platform. Validation from our customers, talented employees, and investors is most welcome as we continue to scale.” Read more.

3 Houston energy startups score awards at annual innovation event

Three energy tech startups secured wins at the Houston Innovation Awards. Photos courtesy

Three energy tech startups scored wins this week at the annual Houston Innovation Awards.

The awards program — hosted by EnergyCapital's sister site, InnovationMap, and Houston Exponential — named its winners on November 8 at the Houston Innovation Awards. The program was established to honor the best and brightest companies and individuals from the city's innovation community.

Eighteen Houston energy startups were named finalists last month across categories, and three won awards. Read more.

Greentown Houston selected for federal program that's accelerating tech entrepreneurship

Greentown Houston has received funding from the EDA. Photo via GreentownLabs.com

Sixty organizations across the country have received a grant from the United States Department of Commerce — and one recipient is based in Houston.

Greentown Labs, dual located in Houston and Somerville, Massachusetts, has received a grant from the 10th cohort of the Economic Development Administration's “Build to Scale” program for its Houston location. The $53 million of funding was awarded to 60 organizations across 36 states, the District of Columbia, and Puerto Rico. All of the programs support technology entrepreneurs across industries.

“The Biden-Harris Administration is Investing in America to help create entrepreneurial ecosystems across the country and put quality, 21st century job opportunities in people’s backyards,” Secretary of Commerce Gina Raimondo says in the press release. “The ‘Build to Scale’ program will unlock innovation potential in regions all over the nation, improving our economic competitiveness now, and for decades to come.” Read more.

Oxy subsidiary gets $550M boost to form new CCUS joint venture

Oxy, which broke ground on its DAC project Stratos earlier this year, has secured a $550 million commitment from a financial partner. Photo via 1pointfive.com

Occidental Petroleum’s direct air capture (DAC) initiative just got a more than half-a-billion-dollar investment from Blackrock, the world’s largest asset management company.

Houston-based Occidental announced November 7 that on behalf of its investment clients, BlackRock has agreed to pump $550 million into the DAC facility, called Stratos, that Oxy is building in the Midland-Odessa area. The investment will be carried out through a joint venture between BlackRock and Oxy subsidiary 1PointFive, which specializes in carbon capture, utilization, and sequestration (CCUS).

A groundbreaking ceremony for Stratos — being billed as the world’s largest DAC operation — was held in April 2023. Construction is scheduled to be completed in mid-2025. The facility is expected to capture up to 500,000 metric tons of carbon dioxide each year. Read more.

Global corporation to open generative AI studio geared toward energy, chemicals industries in Houston

Accenture's Houston hub will introduce a new generative AI studio. Photo via Getty Images

Accenture has announced a new studio coming to Houston that will help its industrial clients with generative artificial intelligence.

The company announced that it will launch a network of studios across North America that will work with clients to explore generative AI applications in business. The initiative will support companies in navigating use cases, conducting AI pilots, and scaling programs. The studios will be in Accenture Innovation Hubs in Chicago, Houston, New York, San Francisco, Toronto and Washington, D.C.

“The studios are designed to help our clients move from interest to action to value, in a responsible way with clear business cases,” Manish Sharma, North America CEO of Accenture, says in the news release. “We are constantly refreshing our learnings from more than 3,000 client conversations on generative AI this year. We use these conversations as demand signals to understand the real-world challenges our clients face and invest in the areas of greatest need and opportunity.” Read more.

Trending News

A View From HETI

A team from UH has published two breakthrough studies that could help cut costs and boost efficiency in carbon capture. Photo courtesy UH.

Editor's note: As 2025 comes to a close, we're revisiting the biggest headlines and major milestones of the energy sector this year. Here are the most exciting scientific breakthroughs made by Houstonians this year that are poised to shape the future of energy:

Rice University team develops eco-friendly method to destroy 'forever chemicals' in water

Rice University researchers have developed a new method for removing PFAS from water that works 100 times faster than traditional filters. Photo via Rice University.

Rice University researchers have teamed up with South Korean scientists to develop the first eco-friendly technology that captures and destroys toxic “forever chemicals,” or PFAS, in water. The Rice-led study centered on a layered double hydroxide (LDH) material made from copper and aluminum that could rapidly capture PFAS and be used to destroy the chemicals.

UH researchers make breakthrough in cutting carbon capture costs

UH carbon capture cost cutting

A team from UH has published two breakthrough studies that could help cut costs and boost efficiency in carbon capture. Photo courtesy UH.

A team of researchers at the University of Houston has made two breakthroughs in addressing climate change and potentially reducing the cost of capturing harmful emissions from power plants. Led by Professor Mim Rahimi at UH’s Cullen College of Engineering, the team first introduced a membraneless electrochemical process that cuts energy requirements and costs for amine-based carbon dioxide capture during the acid gas sweetening process.The second breakthrough displayed a reversible flow battery architecture that absorbs CO2 during charging and releases it upon discharge.

Houston team’s discovery brings solid-state batteries closer to EV use

Houston researchers have uncovered why solid-state batteries break down and what could be done to slow the process. Photo via Getty Images.

A team of researchers from the University of Houston, Rice University and Brown University has uncovered new findings that could extend battery life and potentially change the electric vehicle landscape. Their work deployed a powerful, high-resolution imaging technique known as operando scanning electron microscopy to better understand why solid-state batteries break down and what could be done to slow the process.

Houston researchers make breakthrough on electricity-generating bacteria

A team of Rice researchers, including Caroline Ajo-Franklin and Biki Bapi Kundu, has uncovered how certain bacteria breathe by generating electricity. Photo by Jeff Fitlow/Rice University.

Research from Rice University that merges biology with electrochemistry has uncovered new findings on how some bacteria generate electricity. Research showed how some bacteria use compounds called naphthoquinones, rather than oxygen, to transfer electrons to external surfaces in a process known as extracellular respiration. In other words, the bacteria are exhale electricity as they breathe. This process has been observed by scientists for years, but the Rice team's deeper understanding of its mechanism is a major breakthrough, with implications for the clean energy and industrial biotechnology sectors, according to the university.

Rice researchers' quantum breakthrough could pave the way for next-gen superconductors

Researchers from Rice University say their recent findings could revolutionize power grids, making energy transmission more efficient. Image via Getty Images.

A study from researchers at Rice University could lead to future advances in superconductors with the potential to transform energy use. The study revealed that electrons in strange metals, which exhibit unusual resistance to electricity and behave strangely at low temperatures, become more entangled at a specific tipping point, shedding new light on these materials. The materials share a close connection with high-temperature superconductors, which have the potential to transmit electricity without energy loss, according to the researchers. By unblocking their properties, researchers believe this could revolutionize power grids and make energy transmission more efficient.

UH researchers develop breakthrough material to boost efficiency of sodium-ion batteries

A team at the University of Houston is changing the game for sodium-ion batteries. Photo via Getty Images

A research lab at the University of Houston developed a new type of material for sodium-ion batteries that could make them more efficient and boost their energy performance. The Canepa Research Laboratory is working on a new material called sodium vanadium phosphate, which improves sodium-ion battery performance by increasing the energy density. This material brings sodium technology closer to competing with lithium-ion batteries, according to the researchers.

Houston researchers make headway on developing low-cost sodium-ion batteries

Houston researchers make headway on developing low-cost sodium-ion batteries

Rice's Atin Pramanik and a team in Pulickel Ajayan's lab shared new findings that offer a sustainable alternative to lithium batteries by enhancing sodium and potassium ion storage. Photo by Jeff Fitlow/Courtesy Rice University

A new study by researchers from Rice University’s Department of Materials Science and NanoEngineering, Baylor University and the Indian Institute of Science Education and Research Thiruvananthapuram has introduced a solution that could help develop more affordable and sustainable sodium-ion batteries. The team worked with tiny cone- and disc-shaped carbon materials from oil and gas industry byproducts with a pure graphitic structure. The forms allow for more efficient energy storage with larger sodium and potassium ions, which is a challenge for anodes in battery research. Sodium and potassium are more widely available and cheaper than lithium.

Houston scientists develop 'recharge-to-recycle' reactor for lithium-ion batteries

Rice University scientists' “recharge-to-recycle” reactor has major implications for the electric vehicle sector. Photo courtesy Jorge Vidal/Rice University.

Engineers at Rice University have developed a cleaner, innovative process to turn end-of-life lithium-ion battery waste into new lithium feedstock. The findings demonstrate how the team’s new “recharge-to-recycle” reactor recharges the battery’s waste cathode materials to coax out lithium ions into water. The team was then able to form high-purity lithium hydroxide, which was clean enough to feed directly back into battery manufacturing. The study has major implications for the electric vehicle sector, which significantly contributes to the waste stream from end-of-life battery packs.

Houston researchers develop strong biomaterial that could replace plastic

A team led by M.A.S.R. Saadi and Muhammad Maksud Rahman has developed a biomaterial that they hope could be used for the “next disposable water bottle." Photo courtesy Rice University.

Collaborators from two Houston universities are leading the way in engineering a biomaterial into a scalable, multifunctional material that could potentially replace plastic. The study introduced a biosynthesis technique that aligns bacterial cellulose fibers in real-time, which resulted in robust biopolymer sheets with “exceptional mechanical properties.” Ultimately, the scientists hope this discovery could be used for the “next disposable water bottle,” which would be made by biodegradable biopolymers in bacterial cellulose, an abundant resource on Earth. Additionally, the team sees applications for the materials in the packaging, breathable textiles, electronics, food and energy sectors.

Houston researchers reach 'surprising' revelation in materials recycling efforts

A team led by Matteo Pasquali, director of Rice’s Carbon Hub, has unveiled how carbon nanotube fibers can be a sustainable alternative to materials like steel, copper and aluminum. Photo by Jeff Fitlow/ Courtesy Rice University

Researchers at Rice University have demonstrated how carbon nanotube (CNT) fibers can be fully recycled without any loss in their structure or properties. The discovery shows that CNT fibers could be used as a sustainable alternative to traditional materials like metals, polymers and the larger, harder-to-recycle carbon fibers, which the team hopes can pave the way for more sustainable and efficient recycling efforts.

Trending News