and the winners are...

3 Houston energy startups score awards at annual innovation event

Three energy tech startups secured wins at the Houston Innovation Awards. Photos courtesy

Three energy tech startups scored wins this week at the annual Houston Innovation Awards.

The awards program — hosted by EnergyCapital's sister site, InnovationMap, and Houston Exponential — named its winners on November 8 at the Houston Innovation Awards. The program was established to honor the best and brightest companies and individuals from the city's innovation community.

Eighteen Houston energy startups were named finalists last month across categories, and three won awards.

Syzygy Plasmonics, a deep decarbonization company that builds chemical reactors designed to use light instead of combustion to produce valuable chemicals like hydrogen and sustainable fuels, won in the Hardtech Business category. The company was founded in 2018 based on technology out of Rice University by Trevor Best, co-founder and CEO, who accepted the award.

ALLY Energy, a tech platform that's helping energy companies and climate startups find, develop, and retain great talent, secured a win in the Social Impact Business category, a new category that's celebrating a business providing a solution that would enhance humanity or society in a significant way. Katie Mehnert, founder and CEO, accepted the award.

The big climatetech winner of the evening was Fervo Energy, a startup leveraging proven oil and gas drilling technology to deliver 24/7 carbon-free geothermal energy. Fervo, founded in 2017 by Tim Latimer before relocating to Houston, won in the Sustainability Business category.

Click here to view all of the awards winners from the evening.

Trending News

A View From HETI

Researchers from Rice University say their recent findings could revolutionize power grids, making energy transmission more efficient. Image via Getty Images.

A new study from researchers at Rice University, published in Nature Communications, could lead to future advances in superconductors with the potential to transform energy use.

The study revealed that electrons in strange metals, which exhibit unusual resistance to electricity and behave strangely at low temperatures, become more entangled at a specific tipping point, shedding new light on these materials.

A team led by Rice’s Qimiao Si, the Harry C. and Olga K. Wiess Professor of Physics and Astronomy, used quantum Fisher information (QFI), a concept from quantum metrology, to measure how electron interactions evolve under extreme conditions. The research team also included Rice’s Yuan Fang, Yiming Wang, Mounica Mahankali and Lei Chen along with Haoyu Hu of the Donostia International Physics Center and Silke Paschen of the Vienna University of Technology. Their work showed that the quantum phenomenon of electron entanglement peaks at a quantum critical point, which is the transition between two states of matter.

“Our findings reveal that strange metals exhibit a unique entanglement pattern, which offers a new lens to understand their exotic behavior,” Si said in a news release. “By leveraging quantum information theory, we are uncovering deep quantum correlations that were previously inaccessible.”

The researchers examined a theoretical framework known as the Kondo lattice, which explains how magnetic moments interact with surrounding electrons. At a critical transition point, these interactions intensify to the extent that the quasiparticles—key to understanding electrical behavior—disappear. Using QFI, the team traced this loss of quasiparticles to the growing entanglement of electron spins, which peaks precisely at the quantum critical point.

In terms of future use, the materials share a close connection with high-temperature superconductors, which have the potential to transmit electricity without energy loss, according to the researchers. By unblocking their properties, researchers believe this could revolutionize power grids and make energy transmission more efficient.

The team also found that quantum information tools can be applied to other “exotic materials” and quantum technologies.

“By integrating quantum information science with condensed matter physics, we are pivoting in a new direction in materials research,” Si said in the release.

Trending News