Acquisitions, consolidations, divestitures — here's what news of energy transition deals in Houston trended this year. Photo via Getty Images

Editor's note: As the year comes to a close, EnergyCapital is looking back at the year's top stories in Houston energy transition. From acquisitions to consolidations, this year marked a big one for some of Houston's energy companies. Here were the top five most-read articles covering deals of 2024 — be sure to click through to read the full story.

PE firm acquires Houston renewables fuels infrastructure company

Ara Partners announced this week that it has acquired a majority interest in Houston-based USD Clean Fuels. Image via Shutterstock.

Fresh off its $3 billion fund closure, a Houston private equity firm has made its latest acquisition.

Ara Partners announced this week that it has acquired a majority interest in Houston-based USD Clean Fuels, a developer of logistics infrastructure for renewable fuels. The terms of the deal were not disclosed.

"We have high conviction that the green molecules economy – whether it's renewable fuel feedstocks or biofuels – offers disproportionate opportunity for returns and impact," George Yong, partner and co-head of Infrastructure at Ara Partners, says. Continue reading.

McKinsey acquires Houston-area co. to enhance sustainability services

According to McKinsey data, more than $3.5 trillion will be invested in green hydrogen, carbon capture, renewable energy, and other projects that are working toward net-zero transition by 2050. Photo via ses-estimating.com

A global management consulting company has executed on an acquisition key to its plans amid the energy transition.

McKinsey & Company announced the acquisition of Strategic Estimating Systems, a Sugar Land-based consulting firm specializing in cost estimation for oil, gas, and chemical process industries. The acquisition provides McKinsey with enhanced benchmarking capabilities across capital project management — especially within the energy transition.

The terms of the deal were not disclosed.

"The capital projects ecosystem is presented with a once-in-a-generation chance to aid in transforming economies to achieve net zero," Justin Dahl, partner and global leader of McKinsey & Company's Capital Analytics, says. Continue reading.

Houston chemical company divests new tech arm to PE

Merichem Company has created a new business unit that's been acquired by a private equity firm. Photo via Getty Images

A New Orleans-based private equity firm has announced the acquisition of a Houston chemical company's technology business unit, the business announced today.

Black Bay Energy Capital acquired a portion of Merichem Company’s business — including its Merichem Process Technologies and Merichem Catalyst Products, which will collectively be renamed Merichem Technologies. Merichem's caustic services business, which handles spent caustic for beneficial reuse, will be maintained by the company.

Cyndie Fredrick has been promoted to CEO of Merichem Technologies. She previously served as Merichem's senior vice president and general manager of Merichem Process Technologies. She's joined by CFO Rene Campos, Senior Vice President of Technology Jeff Gomach, and Senior Vice President of Catalysts William Rouleau, who are all former managers within Merichem.

“The Merichem Technologies team has successfully deployed highly engineered and patented technologies, chemical catalysts, and mechanical solutions to various end markets including liquified natural gas, midstream oil and gas, refining of traditional crude and renewable feedstocks, biogas/landfill/RNG production, geothermal energy production, and chemical manufacturing," Fredrick says. Continue reading.

SLB to consolidate carbon capture business in partnership

The combined technology portfolios will accelerate the introduction of promising early-stage decarbonization technology. Photo via Getty Images

SLB announced its plans to combine its carbon capture business with Norway company, Aker Carbon Capture.

Upon completion of the transaction, which is expected to close by the end of the second quarter of this year, SLB will own 80 percent of the combined business and ACC will own 20 percent.

According to a SLB news release, the combined technology portfolios will accelerate the introduction of promising early-stage decarbonization technology.

“For CCUS to have the expected impact on supporting global net-zero ambitions, it will need to scale up 100-200 times in less than three decades,” Olivier Le Peuch, CEO of SLB, says. Continue reading.

Houston-based co. closes acquisition of 50 percent stake in Texas cogeneration facility

Fengate has completed the acquisition of a 50 percent stake in a Texas cogeneration facility, which supplies power and steam to a major industrial site. Photo via Fengate

Fengate Asset Management announced the financial close on the acquisition of a 50 percent interest in Freeport Power Limited, which owns a 440-megawatt cogeneration facility in Freeport, Texas.

FPL is located near the Freeport Energy Center, which is a 260-megawatt cogeneration facility that is currently owned and managed by Fengate. The two facilities work to provide cost-effective power and steam to Dow’s Freeport site, which is the largest integrated chemical manufacturing complex in the Western Hemisphere.

“We are thrilled to have closed this acquisition, which aligns with our strategy of acquiring behind-the-meter cogeneration projects with strong industrial partners like Dow,” Greg Calhoun, managing director of Infrastructure Investments at Fengate, says. Continue reading.

Ian Goldberg joins the Houston office of Akin. Photo via akingump.com

Law firm's Houston office expands energy expertise

new hire

Leading adviser to energy companies, Akin Gump Strauss Hauer & Feld, has announced a new energy transactions partner in the firm’s Houston office.

Ian Goldberg will advise clients on various energy transactions, which will include project development, mergers and acquisitions, divestitures, and financial transactions that will involve oil and gas assets, energy transition investments and rare earth mineral deposits.

He previously led the energy transactions practice at Hunton Andrews Kurth.

“Akin has a top-tier integrated platform across the entire energy value chain,” Goldberg says in a news release.” I’m excited to be joining a growing and dynamic team.”

He will be joining recent additions to Akin’s energy practice that include projects & energy transition partners Ike Emehelu (New York), Alex Harrison, Matt Hardwick and Dan Giemajner (London), energy regulatory partners Emily Mallen and Stephen Hug (Washington, D.C.), tax equity partner Sam Guthrie (Washington, D.C.) and projects & energy transition partner Vanessa Richelle Wilson (Washington, D.C.)..

“Ian adds depth to our energy team with extensive experience in the onshore and offshore upstream and midstream sectors, and his current representation of clients in the carbon capture, utilization & storage and hydrogen spaces further strengthens our growing projects & energy transition practice,” corporate practice co-head Zachary Wittenberg adds in the release.

Ad Placement 300x100
Ad Placement 300x600

CultureMap Emails are Awesome

UH's $44 million mass timber building slashed energy use in first year

building up

The University of Houston recently completed assessments on year one of the first mass timber project on campus, and the results show it has had a major impact.

Known as the Retail, Auxiliary, and Dining Center, or RAD Center, the $44 million building showed an 84 percent reduction in predicted energy use intensity, a measure of how much energy a building uses relative to its size, compared to similar buildings. Its Global Warming Potential rating, a ratio determined by the Intergovernmental Panel on Climate Change, shows a 39 percent reduction compared to the benchmark for other buildings of its type.

In comparison to similar structures, the RAD Center saved the equivalent of taking 472 gasoline-powered cars driven for one year off the road, according to architecture firm Perkins & Will.

The RAD Center was created in alignment with the AIA 2030 Commitment to carbon-neutral buildings, designed by Perkins & Will and constructed by Houston-based general contractor Turner Construction.

Perkins & Will’s work reduced the building's carbon footprint by incorporating lighter mass timber structural systems, which allowed the RAD Center to reuse the foundation, columns and beams of the building it replaced. Reused elements account for 45 percent of the RAD Center’s total mass, according to Perkins & Will.

Mass timber is considered a sustainable alternative to steel and concrete construction. The RAD Center, a 41,000-square-foot development, replaced the once popular Satellite, which was a food, retail and hangout center for students on UH’s campus near the Science & Research Building 2 and the Jack J. Valenti School of Communication.

The RAD Center uses more than a million pounds of timber, which can store over 650 metric tons of CO2. Aesthetically, the building complements the surrounding campus woodlands and offers students a view both inside and out.

“Spaces are designed to create a sense of serenity and calm in an ecologically-minded environment,” Diego Rozo, a senior project manager and associate principal at Perkins & Will, said in a news release. “They were conceptually inspired by the notion of ‘unleashing the senses’ – the design celebrating different sights, sounds, smells and tastes alongside the tactile nature of the timber.”

In addition to its mass timber design, the building was also part of an Energy Use Intensity (EUI) reduction effort. It features high-performance insulation and barriers, natural light to illuminate a building's interior, efficient indoor lighting fixtures, and optimized equipment, including HVAC systems.

The RAD Center officially opened Phase I in Spring 2024. The third and final phase of construction is scheduled for this summer, with a planned opening set for the fall.

Experts on U.S. energy infrastructure, sustainability, and the future of data

Guest column

Digital infrastructure is the dominant theme in energy and infrastructure, real estate and technology markets.

Data, the byproduct and primary value generated by digital infrastructure, is referred to as “the fifth utility,” along with water, gas, electricity and telecommunications. Data is created, aggregated, stored, transmitted, shared, traded and sold. Data requires data centers. Data centers require energy. The United States is home to approximately 40% of the world's data centers. The U.S. is set to lead the world in digital infrastructure advancement and has an opportunity to lead on energy for a very long time.

Data centers consume vast amounts of electricity due to their computational and cooling requirements. According to the United States Department of Energy, data centers consume “10 to 50 times the energy per floor space of a typical commercial office building.” Lawrence Berkeley National Laboratory issued a report in December 2024 stating that U.S. data center energy use reached 176 TWh by 2023, “representing 4.4% of total U.S. electricity consumption.” This percentage will increase significantly with near-term investment into high performance computing (HPC) and artificial intelligence (AI). The markets recognize the need for digital infrastructure build-out and, developers, engineers, investors and asset owners are responding at an incredible clip.

However, the energy demands required to meet this digital load growth pose significant challenges to the U.S. power grid. Reliability and cost-efficiency have been, and will continue to be, two non-negotiable priorities of the legal, regulatory and quasi-regulatory regime overlaying the U.S. power grid.

Maintaining and improving reliability requires physical solutions. The grid must be perfectly balanced, with neither too little nor too much electricity at any given time. Specifically, new-build, physical power generation and transmission (a topic worthy of another article) projects must be built. To be sure, innovative financial products such as virtual power purchase agreements (VPPAs), hedges, environmental attributes, and other offtake strategies have been, and will continue to be, critical to growing the U.S. renewable energy markets and facilitating the energy transition, but the U.S. electrical grid needs to generate and move significantly more electrons to support the digital infrastructure transformation.

But there is now a third permanent priority: sustainability. New power generation over the next decade will include a mix of solar (large and small scale, offsite and onsite), wind and natural gas resources, with existing nuclear power, hydro, biomass, and geothermal remaining important in their respective regions.

Solar, in particular, will grow as a percentage of U.S grid generation. The Solar Energy Industries Association (SEIA) reported that solar added 50 gigawatts of new capacity to the U.S. grid in 2024, “the largest single year of new capacity added to the grid by an energy technology in over two decades.” Solar is leading, as it can be flexibly sized and sited.

Under-utilized technology such as carbon capture, utilization and storage (CCUS) will become more prominent. Hydrogen may be a potential game-changer in the medium-to-long-term. Further, a nuclear power renaissance (conventional and small modular reactor (SMR) technologies) appears to be real, with recent commitments from some of the largest companies in the world, led by technology companies. Nuclear is poised to be a part of a “net-zero” future in the United States, also in the medium-to-long term.

The transition from fossil fuels to zero carbon renewable energy is well on its way – this is undeniable – and will continue, regardless of U.S. political and market cycles. Along with reliability and cost efficiency, sustainability has become a permanent third leg of the U.S. power grid stool.

Sustainability is now non-negotiable. Corporate renewable and low carbon energy procurement is strong. State renewable portfolio standards (RPS) and clean energy standards (CES) have established aggressive goals. Domestic manufacturing of the equipment deployed in the U.S. is growing meaningfully and in politically diverse regions of the country. Solar, wind and batteries are increasing less expensive. But, perhaps more importantly, the grid needs as much renewable and low carbon power generation as possible - not in lieu of gas generation, but as an increasingly growing pairing with gas and other technologies. This is not an “R” or “D” issue (as we say in Washington), and it's not an “either, or” issue, it's good business and a physical necessity.

As a result, solar, wind and battery storage deployment, in particular, will continue to accelerate in the U.S. These clean technologies will inevitably become more efficient as the buildout in the U.S. increases, investments continue and technology advances.

At some point in the future (it won’t be in the 2020s, it could be in the 2030s, but, more realistically, in the 2040s), the U.S. will have achieved the remarkable – a truly modern (if not entirely overhauled) grid dependent largely on a mix of zero and low carbon power generation and storage technology. And when this happens, it will have been due in large part to the clean technology deployment and advances over the next 10 to 15 years resulting from the current digital infrastructure boom.

---

Hans Dyke and Gabbie Hindera are lawyers at Bracewell. Dyke's experience includes transactions in the electric power and oil and gas midstream space, as well as transactions involving energy intensive industries such as data storage. Hindera focuses on mergers and acquisitions, joint ventures, and public and private capital market offerings.

Rice researchers' quantum breakthrough could pave the way for next-gen superconductors

new findings

A new study from researchers at Rice University, published in Nature Communications, could lead to future advances in superconductors with the potential to transform energy use.

The study revealed that electrons in strange metals, which exhibit unusual resistance to electricity and behave strangely at low temperatures, become more entangled at a specific tipping point, shedding new light on these materials.

A team led by Rice’s Qimiao Si, the Harry C. and Olga K. Wiess Professor of Physics and Astronomy, used quantum Fisher information (QFI), a concept from quantum metrology, to measure how electron interactions evolve under extreme conditions. The research team also included Rice’s Yuan Fang, Yiming Wang, Mounica Mahankali and Lei Chen along with Haoyu Hu of the Donostia International Physics Center and Silke Paschen of the Vienna University of Technology. Their work showed that the quantum phenomenon of electron entanglement peaks at a quantum critical point, which is the transition between two states of matter.

“Our findings reveal that strange metals exhibit a unique entanglement pattern, which offers a new lens to understand their exotic behavior,” Si said in a news release. “By leveraging quantum information theory, we are uncovering deep quantum correlations that were previously inaccessible.”

The researchers examined a theoretical framework known as the Kondo lattice, which explains how magnetic moments interact with surrounding electrons. At a critical transition point, these interactions intensify to the extent that the quasiparticles—key to understanding electrical behavior—disappear. Using QFI, the team traced this loss of quasiparticles to the growing entanglement of electron spins, which peaks precisely at the quantum critical point.

In terms of future use, the materials share a close connection with high-temperature superconductors, which have the potential to transmit electricity without energy loss, according to the researchers. By unblocking their properties, researchers believe this could revolutionize power grids and make energy transmission more efficient.

The team also found that quantum information tools can be applied to other “exotic materials” and quantum technologies.

“By integrating quantum information science with condensed matter physics, we are pivoting in a new direction in materials research,” Si said in the release.